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Data assimilation (DA) methods for convective-scale numerical weather prediction
at operational centres are surveyed. The operational methods include variational
methods (3D-Var and 4D-Var), ensemble methods (LETKF) and hybrids between
variational and ensemble methods (3DEnVar and 4DEnVar). At several operational
centres, other assimilation algorithms, like latent heat nudging, are additionally
applied to improve the model initial state, with emphasis on convective scales. It is
demonstrated that the quality of forecasts based on initial data from convective-scale
DA is significantly better than the quality of forecasts from simple downscaling
of larger-scale initial data. However, the duration of positive impact depends on
the weather situation, the size of the computational domain and the data that are
assimilated. Furthermore it is shown that more advanced methods applied at convec-
tive scales provide improvements over simpler methods. This motivates continued
research and development in convective-scale DA.
Challenges in research and development for improvements of convective-scale DA
are also reviewed and discussed. The difficulty of handling the wide range of spa-
tial and temporal scales makes development of multi-scale assimilation methods
and space–time covariance localization techniques important. Improved utilization
of observations is also important. In order to extract more information from exist-
ing observing systems of convective-scale phenomena (e.g. weather radar data and
satellite image data), it is necessary to provide improved statistical descriptions of
the observation errors associated with these observations.
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1 INTRODUCTION

Development of data assimilation (DA) methods for global
numerical weather prediction (NWP) models started with
simple horizontal interpolation methods (Eliassen, 1954)
which gradually developed to become three-dimensional and
to also include multivariate relationships (Lorenc, 1981).
Variational methods were introduced to utilize the model
dynamics in the DA process (Le Dimet and Talagrand,
1986) and four-dimensional variational DA is now applied
operationally (Rabier et al., 2000). In order to take into
account flow-dependence of forecast errors in the DA process,
various forms of Ensemble Kalman Filters (EnKF; Evensen,
1994) have become competitive with variational techniques
for atmospheric DA. More recently, hybrids between vari-
ational and ensemble DA techniques have been proposed
(Lorenc, 2003; Liu et al., 2008) and are becoming main-
stream in DA for global NWP at operational centres (review
by Bannister, 2017).

The DA problem for convective-scale NWP differs from
the global problem in several respects. The higher model
resolution demands dense observations at a suitable tempo-
ral and spatial resolution. Given that convective systems are
often a primary forecast aspect, these observations should
ideally be related to convection: either of their environmental
conditions or of the convective systems themselves. There
is a wide variety of observations available that are not yet
exploited in regional DA systems:

1. only a very small fraction of available satellite observa-
tions is currently used, in particular for cloud-affected
observations;

2. the costs of many ground-based remote-sensing instru-
ments have reduced significantly, which allows the instal-
lation of new sensor networks, and

3. useful information could be extracted from various obser-
vations made for other purposes (e.g. car or mobile phone
sensors, output of wind and solar power production, visi-
bility sensors, etc.).

However, little knowledge exists on where the community
should put its emphasis regarding the refinement of observa-
tional networks and the development of suitable observation
operators and assimilation methods. A few recent studies
have exploited ensemble information to estimate the contri-
bution of various observations to the reduction of analysis
error (Brousseau et al., 2014) or forecast sensitivity to
observations (Sommer and Weissmann, 2016).

One may ask which atmospheric variables would be most
efficient for assimilation at convective scales. Considering
the geostrophic adjustment process, we may hypothesize that
wind field information becomes relatively more important
than mass field information. Simulation and sensitivity exper-
iments with convective-scale models may provide us with
more details on the relative importance of different meteoro-
logical variables as initial conditions. Fabry and Sun (2010)

investigated the sensitivity of the Weather Research and
Forecasting (WRF) model to spatially coherent perturbations
of different model variables for initialization of convective
storms. They concluded that the state of the model atmo-
sphere after a few hours of model integration, measured
through an energy norm, was mostly sensitive to the initial
vertical profiles of moisture, wind and temperature in the
lower and middle troposphere. Vertical profiles of cloud and
precipitation particles were of less importance, partly due to
their lower predictability.

The question of spatial scale is of crucial importance for
DA. For convective-scale DA we may need to know both the
synoptic scales forcing the mesoscale phenomena and also
information on the convective scales that we want to pre-
dict. A complicating factor is the difficulty of recovering all
the scales resolved over a regional model domain using only
observations from inside the domain. As will be discussed
here, there are many open questions and many suggested solu-
tions with regard to the handling of synoptic and meso scales
in convective-scale DA.

Also associated with the spatial scale is the growing impor-
tance of nonlinearity, moist physical processes and unbal-
anced flows at convective scales (Pagé et al., 2007). With
nonlinearity comes flow dependence, since the structures
of the convective-scale phenomena are dependent on the
actual state of the large-scale forcing. The moist physical
processes, for example latent heating, trigger unbalanced
adjustment processes. This means that adjustment processes
and associated unbalanced flow structures have to be taken
into account during the DA. The tools which we have devel-
oped for synoptic-scale DA, for example linear balances and
static background-error constraints, are no longer appropri-
ate. Steps that have been taken to introduce flow dependence
in synoptic-scale DA will certainly be even more important
for convective-scale DA. It is an open question, however,
to what extent these techniques will be completely satisfac-
tory for convective-scale DA, or whether fully nonlinear DA
techniques like particle filters (van Leeuwen, 2009) will be
required, or if modifications to hybrid and ensemble methods
to deal with non-Gaussianity, as suggested in Hodyss (2011),
Janjić et al. (2014) and Bishop (2016), would be sufficient.

This manuscript provides a survey of DA methods for
convective-scale NWP. As atmospheric DA for convective
scales is in a quite early stage of development, the reader may
notice that we do not all fully agree on fundamental principles
for convective-scale DA – questions related to spatial scales
and imbalance, for example. By making these questions and
disagreements visible through this article, we will be able to
take further steps to a joint understanding as a starting point
for further developments.

Section 2 of this article describes operational DA methods
for convective scales and section 3 discusses the impact of
these methods for operational NWP. Challenges in research
for development of convective-scale DA methods are dis-
cussed in section 4 and a summary and some concluding
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TABLE 1 List of acronyms

Acronym Description

3D-Var Three-dimensional Variational DA

3DEnVar Three-dimensional Ensemble Variational DA

4D-Var Four-dimensional Variational DA

4DEnVar Four-dimensional Ensemble Variational DA

AD ADjoint

AEARP Assimilation d´Ensemble ARPege

ALADIN Aire Limitée Adaptation dynamique Développement
InterNational

– Limited-Area Model (LAM) and LAM consortium

ALARO Physical parametrization package for ALADIN

AROME Applications de la Recherche l´Opérationnel à Méso-Echelle

– Convective-scale Limited-Area Model

ARPEGE Action de Recherche Petite Echelle Grande Echelle –
Global Model

ASUCA JMA high-resolution model

BSS Brier Scill Score

CONUS-NAM CONtiguous United States nest of North American
Mesoscale system

– convective-scale forecasting system

COSMO COnsortium for Small scale MOdeling

CRPS Continuous Ranked Probability Score

DA Data Assimilation

DF Digital Filter

DFI DF Initialization

DPCG Double Preconditioned Conjugate Gradient

DWD Deutscher WetterDienst

ECMWF European Centre for Medium-range Weather Forecasts

EDA Ensemble Data Assimilation

EKF Extended Kalman Filter

EnKF Ensemble Kalman Filter

EOF Empirical Orthogonal Functions

EPS Ensemble Prediction System

ERA ECMWF Re-Analysis projects

ETKF Ensemble Transform Kalman Filter

EUMETNET EUropean METeorological services NETwork

FGAT First Guess at Appropriate Time

FSS Fractions Skill Score

GFS Global Forecasting System, the global model of NCEP

GSM Global Spectral Model at JMA

HARMONIE HIRLAM ALADIN Research on Mesoscale Operational
NWP In Europe

– convective-scale forecasting system

HE-VI Horizontally Explicit Vertically Implicit time-stepping

HIRLAM HIgh-Resolution Limited-Area Modelling – LAM model
and LAM consortium

HRRR High-Resolution Rapid Refresh system – convective-scale
forecasting system

IAU Incremental Analysis Update

ICON ICOsahedral Non-hydrostatic (atmospheric model)

IFS Integrated Forecast System

IPW Integrated Precipitable Water

JAXA Japan Aerospace eXploration Agency

JMA Japan Meteorological Agency

JMA-NHM JMA Non-Hydrostatic Model

JNoVA JMA Non-hydrostatic model-based Variational DA system

TABLE 1 List of acronyms (continued)

Acronym Description

KENDA Kilometre-scale ENsemble DA

LA Local Analysis – JMA convective-scale DA system

LAM Limited Area Model

LBC Lateral Boundary Condition

LETKF Local Ensemble Transform Kalman Filter

LFM Local Forecast Model – JMA convective-scale forecast model

LHN Latent Heat Nudging

MA Mesoscale Analysis – JMA mesoscale assimilation system

MSM MesoScale Model – JMA mesoscale model

MY2.5 Mellor–Yamada 2.5 turbulence parametrization

MYJ Mellor–Yamada–Janjić planetary boundary-layer scheme

NAM North American Mesoscale system

NDP Nowcasting Demonstration Project

NCEP National Centers for Environmental Prediction

NICT National Institute of Information and Communications Technology
(Japan)

NMC National Meteorological Center (USA)

NOAA National Oceanic and Atmospheric Administration (USA)

NWP Numerical Weather Prediction

OI Optimal Interpolation

QC Quality Control

RAP RApid Refresh mesoscale analysis and prediction system

RC LACE Regional Cooperation for Limited-Area modelling in Central Europe

RGB Red, Green, Blue colour table

RMSE Root Mean Square Error

RRTMG Rapid Radiative Transfer Model for General circulation model
applications

RTPP Relaxation-To-Prior Perturbations

RUC Rapid Update Cycle/ing

SPPT Stochastic Perturbations of Physical Tendencies

SURFEX SURFace EXternalisée – a surface parametrization package

TERRA COSMO surface parametrization scheme

TKE Turbulent Kinetic Energy

TL Tangent Linear

UKV The UK Variable-resolution model (Met Office)

VarBC Variational Bias Correction

VWC Volume Water Content

WoF Warn-on-Forecast – NOAA development project

WMO World Meteorological Organization

WRF Weather Research and Forecasting model

remarks are provided in section 5. A list of acronyms used is
provided in Table 1 and a glossary of observations and intru-
ments is contained in Table 2. In general, only the acronym
will be used in the text.

2 DESCRIPTION OF OPERATIONAL
METHODS

Data assimilation systems for convective-scale NWP are pre-
sented and discussed here for the following organizations:

1. Météo-France, the national weather service of France.
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TABLE 2 Glossary of observations and instruments

Name Description

ACARS Aircraft Communications Addressing and Reporting System

AIREP AIRcraft REPorts

AIRS Atmospheric InfraRed Sounder (satellite instrument)

AMDAR Aircraft Meteorological DAta Relay

AMeDAS Automated Meteorological Data Acquisition System

AMSR Advanced Microwave Scanning Radiometer (satellite
instrument)

AMSU Advanced Microwave Sounding Unit (satellite instrument)

AMV Atmospheric Motion Vector

Aqua Multi-national scientific research satellite

ARAMIS Application Radar Á la Météorologie Infra-Synoptique

ASCAT Advanced SCATterometer (satellite instrument)

ATMS Advanced Technology Microwave Sounder (satellite instrument)

ATOVS Advanced TIROS Operational Vertical Sounder (system of
sounding instruments on NOAA TIROS series of satellites)

BALTRAD BALTex RADar (Radar network in the Baltic Sea area)

BUFR Binary Universal Form for the Representation of meteorological
data

BUOY Reporting format for buoy measurements

CRIS CRoss-track Infrared Sounder (satellite instrument)

CSR Clear-Sky Radiance

DMSP Defense Meteorological Satellite Program

DPOL Dual POLarimetric (radar)

GCOM Global Change Observation Mission (JAXA satellite)

GeoCloud Cloud fraction profiles based on satellite

cloud top information

GMI Global Microwave Imager (satellite instrument)

GNSS Global Navigation Satellite System

GOES Geostationary Operational Environmental Satellite

GPM Global Precipitation Measurement

GPM/DPR Global Precipitation Measurement/Dual-frequency Precipitation
Radar

GPS Global Positioning System

GPS-RO GPS Radio Occultation

HDF5 Hierarchical Data Format

Himawari Japan meteorological satellite

HIRS High-resolution InfraRed Sounder (satellite instrument)

IASI Infrared Atmospheric Sounding Interferometer (satellite
instrument)

IR InfraRed

MDCARS Meteorological Data Collection And Reporting System

MESONET MESO-scale surface station NETwork

METAR Format for reporting weather information (aviation)

METOP European meteorological polar orbiting satellites

MHS Microwave Humidity Sounder (satellite instrument)

Mode-S EHS Mode-S EnHanced Surveillance winds

– winds obtained from air traffic control systems

MRAR Mode-S Meteorological Routine Air Report

MSG Meteosat Second Generation

– European operational meteorological geostationary satellite

MUAC Maastricht Upper Air Control

MW MicroWave

NPP The SUOMI National Polar-orbiting Partnership

ODIM OPERA Data Information Model

TABLE 2 Continued

Name Description

OPERA Operational Program for the Exchange of weather RAdar
information

PILOT Balloon wind profile observations

PIREP PIlot weather REPort

RASS Radio Acoustic Sounding System

RTTOV Radiative Transfer for TOVS (software package)

SAF Satellite Application Facility

SEVIRI Spinning Enhanced Visible and InfraRed Imager (satellite
instrument)

SHIP Format for marine (ship) observations

SSMIS Special Sensor Microwave Imager/Sounder (satellite
instrument)

SUOMI Satellite named after the scientist Verner Suomi

SYNOP Format for SYNOPtic land surface observations

TEMP Format for radiosonde TEMPerature, humidity and wind
profiles

TIROS Television InfraRed Observation Satellite programme

TOVS TIROS Operational Vertical Sounder

WPR Wind Profiling Radar

ZTD Zenith Total Delay

2. The ALADIN and RC LACE consortia with participa-
tion of the weather services of Algeria, Austria, Belgium,
Bulgaria, Czech Republic, Croatia, France, Hungary,
Morocco, Poland, Portugal, Romania, Slovakia, Slovenia,
Turkey and Tunisia.

3. The HIRLAM consortium with participation of the
weather services of Denmark, Estonia, Finland, France,
Iceland, Ireland, Latvia, Lithuania, the Netherlands, Nor-
way, Spain and Sweden.

4. The Met Office, the national weather service of the UK.
5. The COSMO consortium with participation of the weather

services of Germany, Italy and Switzerland.
6. NOAA, the National Oceanic and Atmospheric Adminis-

tration of the USA.
7. JMA, the Japan Meteorological Agency.

An overview of the operational DA and forecasting sys-
tems of these organizations is provided in Tables 3–6. Table 3
describes the forecast models, Table 4 the core assimilation
methods, Table 5 the operational cycling of DA at the different
centres and Table 6 the observing systems used.

2.1 Formulation of the different DA methods

In order to describe and discuss the assimilation techniques,
we will here provide a brief description of their mathemat-
ical formulations. The notations follow Lorenc (2013) and
Bannister (2017).

2.1.1 Incremental 3D-Var and incremental 4D-Var
Let x denote the model state of dimension n. The following
cost function J is minimized with respect to the assimilation
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ić
an

d
G

al
l(

20
12

)
Ja

nj
i(

20
01

)
Ia

co
no

et
al

.(
20

08
),

M
la

w
er

et
al

.(
19

97
)

E
k

et
al

.(
20

03
)

H
R

R
R

/
N

O
A

A
A

ra
ka

w
a

C
gr

id
3

km
Fi

ni
te

di
ff

er
en

ce
51

si
gm

a
le

ve
ls

18
00

×
10

60
po

in
ts

1-
an

d
2-

m
om

en
t

5-
ca

te
go

ry
T

ho
m

ps
on

m
ic

ro
ph

ys
ic

s;
C

on
ve

ct
io

n-
pe

rm
itt

in
g

M
Y

N
N

bo
un

da
ry

la
ye

r;
R

R
T

M
G

sh
or

t/l
on

g-
w

av
e;

R
U

C
la

nd
su

rf
ac

e

N
on

-h
yd

ro
st

at
ic

;
E

ul
er

ia
n

m
as

s-
co

or
di

na
te

;F
in

ite
di

ff
er

en
ce

5t
h-

or
de

r
po

si
tiv

e-
de

fi
ni

te
ho

ri
zo

nt
al

/v
er

tic
al

ad
ve

ct
io

n;
3r

d-
or

de
r

R
un

ge
–K

ut
ta

tim
e-

sp
lit

tin
g

Pa
re

nt
13

km
R

A
P

do
m

ai
n

(u
se

s
N

O
A

A
G

FS
fo

re
ca

st
s

w
ith

9
hr

la
g)

B
en

ja
m

in
et

al
.(

20
04

;
20

16
)

M
SM

/
JM

A
Fi

ni
te

vo
lu

m
e

m
et

ho
d

A
ra

ka
w

a-
C

gr
id

5
km

76
hy

br
id

-Z
le

ve
ls

81
7
×

66
1

po
in

ts

Ph
ys

ic
s

L
ib

ra
ry

N
on

-h
yd

ro
st

at
ic

;F
ul

ly
co

m
pr

es
si

bl
e;

H
E

-V
I

co
ns

er
va

tiv
e

sp
lit

-e
xp

lic
it;

Fi
ni

te
di

ff
.a

dv
ec

tio
n

w
ith

fl
ux

lim
ite

r

R
ay

le
ig

h
da

m
pi

ng
;G

SM
fo

re
ca

st
s

(3
or

6
hr

la
g)

Is
hi

da
et

al
.(

20
09

)
an

d
Is

hi
da

et
al

.(
20

10
)

H
ar

a
et

al
.(

20
12

)
A

ra
na

m
ie

ta
l.

(2
01

5)

L
FM

/J
M

A
A

s
M

SM
bu

t2
km

gr
id

58
le

ve
ls

15
31

×
13

01
po

in
ts

A
s

M
SM

A
s

M
SM

R
ay

le
ig

h
da

m
pi

ng
;M

SM
fo

re
ca

st
s

(3
–5

hr
la

g)
A

s
M

SM



1224 GUSTAFSSON ET AL.

TA
BL

E
4

O
ve

rv
ie

w
of

co
re

da
ta

as
si

m
ila

tio
n

m
et

ho
ds

ap
pl

ie
d

op
er

at
io

na
lly

T
ra

ns
fo

rm
s

(𝛿
x
=

U
𝜒

)
E

st
im

at
io

n
of

B

B
al

an
ce

op
er

at
or

,
or

L
oc

al
iz

at
io

n/

G
ro

up
/C

en
tr

e
M

et
ho

d
C

on
tr

ol
va

ri
ab

le
s

Sp
at

ia
lf

ilt
er

s
in

fl
at

io
n

In
iti

al
iz

at
io

n
R

ef
er

en
ce

s

M
ét

éo
-F

ra
nc

e
H

IR
L

A
M

/
A

L
A

D
IN

an
d

R
C

L
A

C
E

In
cr

em
en

ta
l3

D
-V

ar
(A

L
A

D
IN

3D
-V

ar
)

𝜁
+

un
ba

la
nc

ed
𝜂
,T
,l

n
(p

s),
q

in
sp

ec
tr

al
an

d
ve

rt
ic

al
E

O
F

sp
ac

e
U
=

B−
1∕

2

St
at

is
tic

al
ba

la
nc

e
op

.
Sp

ec
tr

al
(h

or
.)

;E
O

F
(v

er
t.)

E
D

A
or

N
M

C
B

ro
us

se
au

et
al

.(
20

11
)

B
er

re
(2

00
0)

U
=

U
h
U

p
U

v

C
O

SM
O

/
D

W
D

an
d

M
et

eo
Sw

is
s

L
E

T
K

F
p,

T,
u,

v,
w
,

sp
ec

if
ic

co
nt

en
ts

of
w

at
er

va
po

ur
,c

lo
ud

w
at

er
,

cl
ou

d
ic

e

R
T

PP
;A

da
pt

iv
e

m
ul

tip
lic

at
iv

e
co

v.
in

fl
.;

A
da

pt
.h

or
iz

.l
oc

al
iz

.
ve

rt
.l

oc
al

iz
.w

ith
0.

07
5–

0.
5

in
ln

(p
)

H
yd

ro
st

at
ic

ba
la

nc
in

g
of

in
cr

em
en

ts

Sc
hr

af
f

et
al

.(
20

16
)

M
et

O
ff

ic
e

In
cr

em
en

ta
l3

D
-V

ar
an

d
4D

-V
ar

𝜓
,Φ

,u
nb

al
an

ce
d

p,
μ,

lo
g 1

0
(a

er
os

ol
)

U
=

U
p
U

aU
h
U

v
L

ag
ge

d
N

M
C

IA
U

J c
−

D
FI

(4
D

-V
ar

)
In

gl
eb

y
et

al
.(

20
13

)

C
O

N
U

S
N

A
M

/
N

O
A

A
In

cr
em

en
ta

lh
yb

ri
d

3D
E

nV
ar

an
d

cl
ou

d
an

al
ys

is
no

n-
va

ri
at

io
na

l

𝜓
+

un
ba

la
nc

ed
Φ
,T
,p

s
an

d
no

rm
al

iz
ed

q
cl

ou
d

an
al

ys
is

:q
i,

q l
,q

r,
q s

,T
te

nd

y
=

B−
1
x

St
at

is
tic

al
ba

la
nc

e
op

.
R

ec
ur

si
ve

fi
lte

rs

N
M

C
w

ith
gl

ob
al

E
nK

F
m

em
be

rs
25

%
st

at
ic

+
75

%
en

se
m

bl
e

D
FI

im
po

se
d

ra
da

r-
de

ri
ve

d
la

te
nt

he
at

in
g

W
u

et
al

.(
20

17
)

H
u

et
al

.(
20

06
)

H
R

R
R

/
N

O
A

A
In

cr
em

en
ta

lh
yb

ri
d

3D
E

nV
ar

an
d

no
n-

va
ri

at
io

na
lc

lo
ud

an
al

ys
is

𝜓
+

un
ba

la
nc

ed
Φ
,T
,p

s
an

d
no

rm
al

iz
ed

q
cl

ou
d

an
al

ys
is

:
q i

,q
c,

q r
,q

s,
q g

,T

y
=

B−
1
x

St
at

is
tic

al
ba

la
nc

e
op

.
R

ec
ur

si
ve

fi
lte

rs

N
M

C
w

ith
gl

ob
al

E
nK

F
m

em
be

rs
25

%
st

at
ic

+
75

%
en

se
m

bl
e

D
ir

ec
tly

im
po

se
d

ra
da

r-
de

ri
ve

d
la

te
nt

he
at

in
g

B
en

ja
m

in
et

al
.(

20
04

)
B

en
ja

m
in

et
al

.(
20

16
)

H
u

et
al

.(
20

17
)

M
A

/J
M

A
In

cr
em

en
ta

l
4D

-V
ar

u,
v,
𝜃

,p
s,

q∕
qb sa

t

H
yd

ro
st

at
ic

B
A

L
an

ce
op

.;
Sq

rt
of

ve
rt

.c
ov

.V
;S

qr
to

f
ho

r.
co

rr
by

C
H

O
L

es
ky

de
c.

:
U

=
B

A
L
×V

1∕
2
×C

H
O

L

N
M

C
J c

−
D

FI
H

on
da

et
al

.(
20

05
)

L
A

/J
M

A
3D

-V
ar

u,
v,
𝜃

,p
s,

T g
,

q∕
qb sa

t,
V

W
C

g

H
yd

ro
st

at
ic

B
A

L
an

ce
op

.;
V

er
t.

co
or

d.
tr

an
sf

.T
;

Sq
rt

of
ve

rt
.c

ov
ar

.V
;S

qr
to

f
ho

r.
co

rr
.b

y
R

ec
ur

s.
Fi

lte
r:

U
=

B
A

L
×T

×
V

1∕
2
×

R
F

N
M

C
C

yc
lin

g
fo

r
3

hr
in

ea
ch

ru
n

JM
A

(2
01

6)
A

ra
na

m
ie

ta
l.

(2
01

5)

T
he

fo
llo

w
in

g
sy

m
bo

ls
ar

e
us

ed
in

th
e

co
nt

ro
l

va
ri

ab
le

tr
an

sf
or

m
s:

u,
v,

w
th

e
zo

na
l,

m
er

id
io

na
l

an
d

ve
rt

ic
al

th
re

e-
di

m
en

si
on

al
w

in
d

fi
el

d
co

m
po

ne
nt

s;
𝜁

vo
rt

ic
ity

;
𝜓

st
re

am
fu

nc
tio

n;
𝜂

di
ve

rg
en

ce
;
Φ

ve
lo

ci
ty

po
te

nt
ia

l;
T

te
m

pe
ra

tu
re

;𝜃
po

te
nt

ia
lt

em
pe

ra
tu

re
;p

pr
es

su
re

;p
s

su
rf

ac
e

pr
es

su
re

;q
sp

ec
if

ic
hu

m
id

ity
;q

b sa
t
ba

ck
gr

ou
nd

sa
tu

ra
tio

n
sp

ec
if

ic
hu

m
id

ity
;q

g
gr

au
pe

l;
q l

cl
ou

d
liq

ui
d

w
at

er
;q

i
cl

ou
d

ic
e;

q c
cl

ou
d

co
nd

en
sa

te
;q

r
ra

in
w

at
er

;q
s

sn
ow

w
at

er
;

T g
gr

ou
nd

te
m

pe
ra

tu
re

;
T t

en
d

te
m

pe
ra

tu
re

te
nd

en
cy

;V
W

C
g

gr
ou

nd
vo

lu
m

e
w

at
er

co
nt

en
t;
μ

tr
an

sf
or

m
ed

hu
m

id
ity

;B
ba

ck
gr

ou
nd

-e
rr

or
co

va
ri

an
ce

;
U

to
ta

l
co

nt
ro

l
ve

ct
or

tr
an

sf
or

m
;

U
p

pa
ra

m
et

er
(f

ro
m

un
co

rr
el

at
ed

co
nt

ro
lv

ar
ia

bl
es

to
m

od
el

va
ri

ab
le

s)
tr

an
sf

or
m

;U
a

ad
ap

tiv
e

gr
id

tr
an

sf
or

m
;U

h
ho

ri
zo

nt
al

tr
an

sf
or

m
an

d
U

v
ve

rt
ic

al
tr

an
sf

or
m

.



GUSTAFSSON ET AL. 1225

TA
BL

E
5

O
ve

rv
ie

w
of

op
er

at
io

na
ld

at
a

as
si

m
ila

tio
n

cy
cl

in
g

R
es

ol
.o

f
D

A
cy

cl
e/

C
ou

pl
in

g
to

L
B

C
s

L
at

en
t

in
cr

em
.

w
in

do
w

(h
)

la
rg

e-
sc

al
e

du
ri

ng
he

at

G
ro

up
/C

en
tr

e
M

et
ho

d
(k

m
)

D
A

D
A

nu
dg

in
g

R
ef

er
en

ce
s

M
ét

éo
-F

ra
nc

e
A

L
A

D
IN

3D
-V

ar
1.

3
1

A
R

PE
G

E
0

hr
la

g
N

o
B

ro
us

se
au

et
al

.(
20

16
)

H
IR

L
A

M
A

L
A

D
IN

3D
-V

ar
2.

5
3

or
6

Sp
ec

tr
al

bl
en

di
ng

of
ba

ck
gr

ou
nd

w
ith

L
B

C
s

E
C

M
W

F
3–

6
hr

la
g

N
o

Y
an

g
(2

00
5)

A
L

A
D

IN
an

d
R

C
L

A
C

E
A

L
A

D
IN

3D
-V

ar
or

B
le

nd
V

ar
2.

5
3

or
6

B
le

nd
V

ar
(s

ec
tio

n
2.

2.
5)

A
R

PE
G

E
0

hr
la

g
or

E
C

M
W

F
6

hr
la

g
N

o
B

öl
ön

ie
ta

l.
(2

01
5)

M
ile

et
al

.(
20

15
)

C
O

SM
O

/D
W

D
K

E
N

D
A

/L
E

T
K

F
2.

8
1

IC
O

N
en

se
m

bl
e

(2
0

km
);

0
hr

la
g

Y
es

Sc
hr

af
f

et
al

.(
20

16
)

C
O

SM
O

/
M

et
eo

Sw
is

s
K

E
N

D
A

/L
E

T
K

F
2.

2
1

E
C

M
W

F
en

se
m

bl
e

Y
es

M
et

O
ff

ic
e

In
cr

em
.3

D
-V

ar
3.

3
3

M
et

O
ff

ic
e

gl
ob

al
3–

6
hr

la
g

Y
es

M
et

O
ff

ic
e

In
cr

em
.4

D
-V

ar
4.

5
1

M
et

O
ff

ic
e

gl
ob

al
3–

8
hr

la
g

Y
es

C
O

N
U

S
N

A
M

/
N

O
A

A
In

cr
em

.h
yb

ri
d

3D
E

nV
ar

an
d

no
n-

va
ri

at
io

na
lc

lo
ud

an
al

ys
is

9.
0

1 Fr
ee

fo
re

ca
st

ev
er

y
6

hr

R
es

ta
rt

fr
om

6
hr

fo
re

ca
st

fr
om

gl
ob

al
D

A
sy

st
em

at
t-6

h;
G

lo
ba

le
ns

em
bl

e
fo

r
3D

E
nV

ar
co

va
ri

an
ce

s

Pa
re

nt
do

m
ai

n
m

od
el

(1
2

km
)

Y
es

(v
ia

D
FI

)

H
R

R
R

/N
O

O
A

In
cr

em
.h

yb
ri

d
3D

E
nV

ar
an

d
no

n-
va

ri
at

io
na

lc
lo

ud
an

al
ys

is

12
.0

1 Fr
ee

fo
re

ca
st

ev
er

y
1

hr

R
es

ta
rt

fr
om

pa
re

nt
do

m
ai

n
m

od
el

(1
3

km
)

t-1
h;

G
lo

ba
l

en
se

m
bl

e
fo

r
3D

E
nV

ar
co

va
ri

an
ce

s

Pa
re

nt
do

m
ai

n
m

od
el

(1
3

km
)

Y
es

M
A

/J
M

A
In

cr
em

en
ta

l
4D

-V
ar

15
.0

3
G

SM
3–

6
hr

la
g

N
o

L
A

/J
M

A
3D

-V
ar

5.
0

1
/c

yc
lin

g
fr

om
t-3

hr
R

es
ta

rt
fr

om
M

SM
;t

-3
hr

as
ba

ck
gr

ou
nd

M
SM

3–
5

hr
la

g
N

o

T
he

no
ta

tio
n

t-
nh

is
ex

pl
ai

ne
d

in
th

e
te

xt
.

bg
=

ba
ck

gr
ou

nd



1226 GUSTAFSSON ET AL.

TA
BL

E
6

O
ve

rv
ie

w
of

as
si

m
ila

te
d

ob
se

rv
at

io
n

ty
pe

s

D
at

a

cu
t-

of
f

G
ro

un
d-

ba
se

d
B

ia
s

C
en

tr
e

(m
in

)
C

on
ve

nt
io

na
l

R
ad

ar
G

PS
Sa

te
lli

te
s

O
th

er
co

rr
ec

tio
n

M
ét

éo
-F

ra
nc

e
45

–1
05

T
E

M
P,

PI
L

O
T

,B
U

O
Y

,
SY

N
O

P,
SH

IP
,A

IR
E

P,
A

C
A

R
S,

A
M

D
A

R
,

M
E

SO
N

E
T

D
op

pl
er

w
in

ds
R

ef
le

ct
iv

iti
es

Z
T

D
SE

V
IR

I,
A

T
O

V
S,

IA
SI

,
A

IR
S,

C
R

IS
,A

T
M

S,
SS

M
IS

,M
H

S,
G

M
I,

A
M

V
,

Sc
at

te
ro

m
.w

in
ds

V
ar

B
C

pa
rt

ly
sh

ar
ed

w
ith

gl
ob

al
sy

st
em

H
IR

L
A

M
90

–2
40

T
E

M
P,

PI
L

O
T

,B
U

O
Y

,
SY

N
O

P,
SH

IP
,A

IR
E

P,
M

od
es

-S
E

H
S

an
d

A
M

D
A

R

M
ul

ti-
na

tio
na

l
re

fl
ec

tiv
iti

es
Z

T
D

T
O

V
S,

IA
SI

,S
ca

tte
ro

m
.

w
in

ds
,A

T
M

S,
G

PS
-R

O
,

A
M

V

V
ar

B
C

sa
t.

an
d

G
PS

A
L

A
D

IN
an

d
R

C
L

A
C

E
90

–2
40

SY
N

O
P,

T
E

M
P,

PI
L

O
T

,
SH

IP
,A

IR
E

P
SE

V
IR

I,
T

O
V

S,
IA

SI
,

H
IR

S,
A

M
V

,S
ca

tte
ro

m
.

w
in

ds

V
ar

B
C

sa
t.

C
O

SM
O

/D
W

D
an

d
M

et
eo

Sw
is

s

90
–2

40

D
W

D
:1

5

SY
N

O
P,

T
E

M
P,

PI
L

O
T

,
SH

IP
,A

IR
E

P
Su

rf
ac

e
pr

ec
ip

ita
tio

n
ra

te
s

by
L

H
N

in
al

le
ns

em
bl

e
m

em
be

rs

M
et

O
ff

ic
e

45
–7

5
SY

N
O

P,
SH

IP
,T

E
M

P,
PI

L
O

T
,M

E
TA

R
,B

U
O

Y
,

A
IR

E
P,

A
M

D
A

R

D
op

pl
er

w
in

ds
,

su
rf

ac
e

ra
in

ra
te

Z
T

D
A

M
V

,S
ca

tte
ro

m
.w

in
ds

,
A

M
SU

-B
,I

A
SI

,C
R

IS
,

A
IR

S,
A

T
M

S,
SE

V
IR

I

R
oa

ds
id

e
se

ns
or

s
W

PR
G

eo
C

lo
ud

V
ar

B
C

sa
t.

C
O

N
U

S-
N

A
M

/
N

O
A

A
80

T
E

M
P,

PI
L

O
T

,B
U

O
Y

,
SY

N
O

P,
SH

IP
,M

E
TA

R
,

M
E

SO
N

E
T

,P
IR

E
P,

A
M

D
A

R
,

M
D

C
A

R
S/

A
C

A
R

S

D
op

pl
er

w
in

ds
R

ef
le

ct
iv

iti
es

W
PR

IP
W

G
O

E
S

15
,M

E
T

O
P

A
/B

,
SU

O
M

I
N

PP
,A

qu
a,

N
O

A
A

19
/1

8/
15

,G
PS

be
nd

in
g

an
gl

e,
Sc

at
te

ro
m

.
w

in
ds

,A
M

V

R
A

SS
,

L
ig

ht
ni

ng
,

V
ar

B
C

in
pa

re
nt

m
od

el

H
R

R
R

/N
O

A
A

30
T

E
M

P,
PI

L
O

T
,B

U
O

Y
,

SY
N

O
P,

SH
IP

,A
IR

E
P

M
E

SO
N

E
T

,P
IR

E
P,

A
M

D
A

R
,

M
D

C
A

R
S/

A
C

A
R

S

R
ef

le
ct

iv
iti

es
W

PR
IP

W
G

PS
be

nd
in

g
an

gl
e,

G
O

E
S

(c
lo

ud
pr

od
.)

,S
ca

tte
ro

m
.

w
in

ds
,A

M
V

R
A

SS
,

L
ig

ht
ni

ng

M
A

/J
M

A
50

SY
N

O
P,

M
E

TA
R

,S
H

IP
,

B
U

O
Y

,T
E

M
P,

PI
L

O
T

,
A

IR
E

P,
A

M
D

A
R

R
ad

ia
l

ve
lo

ci
tie

s,
re

fl
ec

tiv
iti

es
,

R
ad

ar
-r

ai
ng

au
ge

pr
ec

ip
.

IP
W

R
ad

ia
nc

e
fr

om
M

W
/I

R
so

un
de

r/
im

ag
er

,A
M

V
,

G
N

SS
R

O
re

fr
ac

t.,
Sc

at
te

ro
m

.w
in

ds
,P

re
ci

p.
fr

om
M

W
im

ag
er

W
PR

V
ar

B
C

in
gl

ob
al

sy
st

em

L
A

/J
M

A
30

SY
N

O
P,

A
M

eD
A

S,
SH

IP
,

B
U

O
Y

,T
E

M
P,

PI
L

O
T

,
A

IR
E

P,
A

M
D

A
R

R
ad

ia
l

ve
lo

ci
tie

s,
re

fl
ec

tiv
iti

es

IP
W

R
ad

ia
nc

e
fr

om
M

W
/I

R
so

un
de

r/
im

ag
er

,A
M

V
,S

oi
l

m
oi

st
ur

e
fr

om
M

W
im

ag
er

/s
ca

tte
ro

m
.

W
PR

V
ar

B
C

in
gl

ob
al

sy
st

em



GUSTAFSSON ET AL. 1227

increment 𝛿x = x − xb in incremental 4D-Var:

J = Jb + Jo = 1
2
𝛿xTB−1𝛿x

+ 1
2

K∑
k=0

(HkMk𝛿x−dk)TR−1
k (HkMk𝛿x−dk), (1)

where xb is the model background state valid at time t0, B
is the background-error covariance matrix and the subscript
k denotes time tk = t0 + kΔT within the assimilation win-
dow from time t0 to time tK for regular time interval ΔT ,
dk = yk −k(k(xb)) are the innovations, with yk being the
vector of observations at time tk, k(⋅) denotes integration of
the nonlinear model from time t0 until time tk and Mk denotes
the corresponding TL model integration, linearized around
the background trajectoryk(xb). Rk is the observation-error
covariance matrix, k(⋅) is the nonlinear observation oper-
ator, and Hk is the corresponding TL observation operator,
linearized around k(xb), all valid at time tk.

In the basic 3D-Var and 4D-Var formulations used in opera-
tions at convective scales, the covariance matrix B is static and
not dependent on the forecast errors “of the day.” Due to its
large dimension, the inverse B−1 cannot be obtained directly
by matrix inversion techniques. Therefore we introduce a
pre-conditioning matrix U such that B = UUT, 𝛿x = U𝝌

and 𝝌 is the assimilation control variable. With this choice
Jb = 𝝌

T
𝝌∕2. The transformation matrix U may be given

as a series of simpler transform operators that define the
background-error covariance model. The order in which these
operators are carried out is important (Bannister, 2008). In
the HARMONIE-AROME formulation (see below), balance
operator transforms are carried out in spectral space, which
makes these balance operators scale-dependent. Compared to
what is usually done at global scales, an additional multivari-
ate relationship may be used for specific humidity following
Berre (2000), which is of great interest at convective scales
where the coupling between humidity and divergence, for
example, can be important.

The minimization of the cost function J is done iteratively
by calculation of the gradient 𝛻𝝌J with respect to the control
vector 𝝌 and application of, for example, conjugate gradi-
ent minimization. The spatial resolution of the assimilation
increment can be reduced, making 4D-Var computationally
more tractable.

Standard incremental 3D-Var is obtained from Equation (1)
by referring all observations to the start of the assimilation
window t0 and 3D-Var FGAT by making the TL model an
identity operator Mk = I and, preferably, referring the assim-
ilation increment to the middle of the assimilation window.

2.1.2 Multi-incremental 4D-Var
The nonlinearities of the forecast model and the observation
operators may be better treated by iterative relinearizations
in an outer loop by splitting the minimization into a series
(𝜏 = 1,… ,N𝜏) of quadratic sub-problems to determine 𝛿x𝜏 ,
with the total increment 𝛿x=

∑N𝜏

𝜏=1 𝛿x𝜏 . The cost-function for

each subproblem 𝜏 is given by (Courtier et al., 1994)

J𝜏 =Jb
𝜏 + Jo

𝜏

=1
2
{𝛿x𝜏 − (xb − x𝜏)}TB−1{𝛿x𝜏 − (xb − x𝜏)}

+ 1
2

K∑
k=0

(H𝜏
kM𝜏

k𝛿x𝜏−d𝜏k)
TR−1

k (H𝜏
kM𝜏

k𝛿x𝜏−d𝜏k), (2)

where d𝜏k = yk − k(k(x𝜏)), M𝜏
k is the TL forecast model

linearized around the guess trajectory k(x𝜏) and H𝜏
k is the

TL observation operator also linearized around k(x𝜏). The
initial guess x1 = xb is typically used and, starting from 𝜏 = 1,
Equation (2) is then minimized to find 𝛿x𝜏 , after which the
guess state is updated with x𝜏+1 = x𝜏+𝛿x𝜏 . The spatial resolu-
tion of the increment may differ between different outer-loop
iterations.

2.1.3 The hybrid 3DEnVar and the hybrid 4DEnVar
The aim of hybrid variational ensemble DA methods is to
combine the robustness and full-rank covariance matrix of
variational methods with the flow-dependence of ensemble
methods. For a simplest possible 3DEnVar, we may fol-
low Liu et al. (2008) and replace the static error covari-
ance B in (1) with a flow-dependent error covariance
P=XXT estimated from an ensemble of background model
states. X is a matrix whose columns are the normalized
deviations of the ensemble background states from their
mean xb:

X = 1√
Nens − 1

(
xb,1 − xb,… , xb,Nens − xb

)
, (3)

where Nens is the number of ensemble members. We may
apply X for the pre-conditioning 𝛿x = X𝝌 . The control vector
𝝌 will have the dimension of the number of ensemble mem-
bers and we can notice that the assimilation increment is just
a linear combination of the ensemble perturbations.

Although flow-dependence has been achieved, this sim-
ple 3DEnVar will suffer from two problems. Due to the
limited number of ensemble members (Nens ∼ 10 −
100) small-amplitude covariances will be poorly represented,
resulting in noisy assimilation increments. Furthermore, the
spatial variations in a small ensemble may not describe
all observed structures of importance. Standard remedies to
these problems are to introduce covariance localization and
to combine the ensemble covariance with a static full-rank
covariance (hybridization). Localization in model space is
generally carried out by a Schur product (element-by-element
multiplication) of the ensemble covariance matrix P with
a localization matrix C, Ploc = C◦P, where the elements
of the localization matrix force the covariances to become
zero for grid separations larger than a pre-defined localiza-
tion length-scale. Lorenc (2003) proposed that the covariance
localization could be carried out through a Schur prod-
uct between localized weights, included in an augmented
control vector, and the ensemble background perturbations.
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The mathematical equivalence of differently posed hybrid
methods was proven by Wang et al. (2007) and a compre-
hensive review has been published by Bannister (2017). We
will briefly describe the method suggested by Lorenc (2003),
applied in several global (Clayton et al., 2013; Kleist and
Ide, 2015) and regional (Gustafsson and Bojarova, 2014)
implementations.

For hybrid 4DEnVar, the increment 𝛿x(tk) at time tk within
the assimilation window is formed as a linear combination
of a variational (3D-Var FGAT) contribution 𝛿xvar and a
time-varying ensemble contribution 𝛿xens(tk):

𝛿x(tk) = 𝛽var𝛿xvar + 𝛽ens𝛿xens(tk)

= 𝛽var𝛿xvar + 𝛽ens

Nens∑
l=1

𝜶l◦(X)l(tk), (4)

with 𝛽2
var+𝛽2

ens = 1 (a larger value of 𝛽var was used by Clayton
et al., 2013, as a form of covariance inflation) and using (X)l
to denote column l of the matrix X of scaled ensemble pertur-
bations. The pre-conditioning for the variational contribution
is done as for 3D-Var. The 𝜶l vector can be considered as a
localized weight field for the ensemble perturbation of mem-
ber l. 𝜶l will be a vector of the same dimension n as the model
increment vector.

The cost function for 4DEnVar is given by

JEn-Var = Jb + Jens + Jo

= 1
2
𝛿xT

varB−1𝛿xvar +
1
2
𝜶

TA−1
𝜶

+ 1
2

K∑
k=0

{Hk𝛿x(tk)−dk}TR−1
k {Hk𝛿x(tk)−dk}, (5)

where 𝜶 is a vector containing the 𝜶l weighting factors for
all ensemble members and A is the localization correlation
matrix. Pre-conditioning for Jens is done by factorization of
the A matrix, often by Cholesky factorization. It should be
noted that no TL and adjoint model integrations are needed
for 4DEnVar, since the four-dimensional error covariances are
estimated from the pre-calculated trajectories of the nonlinear
ensemble members.

3DEnVar and 4DEnVar require that an ensemble of back-
ground model states is available. In several early applications
of 3(4)DEnVar (Buehner, 2005; Buehner et al., 2013; Kleist
and Ide, 2015), the required ensemble is obtained from an
existing EPS, possibly at lower model resolution. Gustafs-
son and Bojarova (2014) obtained an ensemble from running
the full-resolution nonlinear model with an ETKF rescaling
(Bishop et al., 2001) of the background ensemble perturba-
tions to represent analysis-error ensemble perturbations. It
may be that a full-resolution ensemble is needed to fully
benefit from ensemble DA at convective scales.

2.1.4 A Local Ensemble Transform Kalman Filter (LETKF)
Dropping the k time index for observations, innovations, the
observation-error covariance matrix, the observation operator

and its corresponding TL operator, the analysis step of the
EnKF at a fixed time can be implemented by minimizing the
cost function

JLETKF = 1
2
𝛿xTP−1𝛿x+ 1

2
(d−H𝛿x)TR−1(d−H𝛿x), (6)

where 𝛿x = x − xb and d = y − (xb). However, the
ensemble-derived background-error covariance matrix P is
not invertible, so the state variables are transformed into
the space spanned by the ensemble (Bishop et al., 2001;
Zupanski, 2005; Hunt et al., 2007), as is done for EnVar algo-
rithms. The minimization is then carried out for the vector
of weights w, whose size is equal to the number of ensem-
ble members Nens. The analysis corresponding to the EnKF
solution would then be xa = xb + Xw, with X and P defined
as in the previous section. Using the linear approximation
(xb+Xw) ≈ (xb)+Ybw, the cost function for w in the
ensemble space is then given by

JLETKF = 1
2

wTw

+ 1
2

{
y−(xb)−Ybw

}TR−1{y−(xb)−Ybw
}
, (7)

where

Yb = 1√
Nens − 1

(
yb,1−yb,… , yb,Nens−yb

)
(8)

is the ensemble background perturbation matrix in observa-
tion space (noting that yb is the mean of the observation space
ensemble and yb,l = (xb,l) is obtained by applying the
nonlinear observation operator to each ensemble member l).

For the minimum of JLETKF and the analysis error covari-
ance matrix Pa, the Kalman filter equations in reduced rank
would be used, resulting in the analysis for the deterministic
run and the analysis ensemble perturbations from the mean
given through

xa = xb + Xa(Ya)TR−1 {y −(xb)
}
, (9)

Xa = X
{

I + (Yb)TR−1Yb}−1∕2
, (10)

where 1∕2 denotes that a symmetric square root of the matrix
is taken, Pa = Xa(Xa)T is the analysis-error covariance matrix
and Ya is the ensemble analysis perturbation matrix in obser-
vation space. A more detailed description of the presented
algorithm can be found in Schraff et al. (2016). Other LETKF
implementations may differ in detail (e.g. Hunt et al., 2007).
Section 2.4 gives a description of domain localization with
weighting of observations.

2.1.5 Surface and soil assimilation
Since many convective-scale phenomena are forced from the
lower boundary condition, surface and soil DA are impor-
tant components of any convective-scale DA system. These
components are of such importance that they could warrant
a survey article by itself, but here we will give only a brief
overview.
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Surface assimilation techniques mainly use screen-level
observations of relative humidity and temperature to infer
realistic estimates about the soil variables (i.e. soil moisture
and soil temperature) by optimally combining the screen-level
observations with a short-range forecast. Satellite observa-
tions, for example ASCAT soil wetness data, have also started
to be used operationally (Dharssi et al., 2011). While OI has
been the more commonly used technique for operational sur-
face assimilation (Giard and Bazile, 2000; Drusch, 2007), the
EKF has been gaining more attention and has, for example,
replaced the old OI scheme for soil moisture analysis in the
IFS system of the ECMWF (de Rosnay et al., 2012). It is also
used operationally at the DWD (Hess, 2001) and at the Met
Office (Dharssi et al., 2012). The main difference between OI
and the EKF is that for OI the gain coefficients are static while
the EKF uses dynamical gain coefficients. The main differ-
ence between the EKF and the ETKF, as described above, is
that the error covariances of the EKF are estimated through
model simulations with small enough perturbations to stay
within linear regimes, while the ETKF uses perturbations of
realistic magnitude calculated through an ensemble.

For the time being, the surface and soil assimilation is gen-
erally performed separately from the upper-air analysis. A
unique feature of the JMA local NWP system is the inclusion
of surface and soil variables among the control variables of
the atmospheric DA (section 2.6).

2.2 Météo-France and the HIRLAM and ALADIN
consortia

Météo-France and the HIRLAM and ALADIN consortia use
the same convective-scale DA system based on the spectral
ALADIN variational DA scheme (Fischer et al., 2005). The
scheme was developed in the framework of the ARPEGE/IFS
software (Courtier et al., 1994) from which it has inherited
most of its characteristics (in terms of incremental formu-
lation, observation operators, minimization technique, data
flow, etc.).

2.2.1 Basic 3D-Var
In order to be informative across most model scales and par-
ticularly at the smaller ones, which is a major challenge in
convective-scale DA, the analysis has to be performed at a
horizontal resolution very close to that of the model. The sys-
tem currently uses 3D-Var operationally to limit the numerical
cost at these resolutions. To partially overcome the lack of
the temporal dimension, this scheme is used in a forward
intermittent cycle (1 or 3 h), which is more frequent than
for global systems (usually with a 6 hr cycle). This allows
us to take greater advantage of the high-frequency observa-
tions such as radar, radiances from geostationary satellites,
the GNSS, Mode-S (section 3.2.2) or surface measurements.
Each 3D-Var performs an analysis of the two wind compo-
nents, temperature, specific humidity and surface pressure.

The other prognostic fields (such as TKE, non-hydrostatic
fields or hydrometeors) are taken directly from the back-
ground. The scheme uses climatological background-error
covariances that are modelled following the formalism pro-
posed by Derber and Bouttier (1999) for global scales and
adapted to regional and limited-area models by Berre (2000).
This multivariate formulation, which uses the vorticity and
the unbalanced divergence, temperature, specific humidity
and surface pressure as control variables (Table 4) relies
on assumptions of horizontal homogeneity, isotropy and
non-separability. Cross-covariances between errors for the
different variables are represented using scale-dependent sta-
tistical regressions, including a balance relationship for spe-
cific humidity.

2.2.2 The Météo-France (AROME) DA cycling
AROME-France is the convective-scale NWP system which
has been running operationally at Météo-France since the end
of 2008 (Seity et al., 2011), as a complement to the global
model ARPEGE. Currently, and as described in Table 3,
it uses a 1.3 km horizontal resolution and 90 vertical lev-
els over a 1500× 1400 grid point geographical domain and
performs a 3D-Var analysis at these resolutions in a con-
tinuous DA cycle every hour (Brousseau et al., 2016). The
observation cut-off times range from 45 to 105 min depend-
ing on the analysis time. The DA scheme uses all observa-
tions within the assimilation time window that have been
received before the observation cut-off time. Climatological
background-error covariances are estimated from precom-
puted AROME-France EDA training data at full resolution.
Such covariances have been proven to be more representa-
tive of the smaller model scales than covariances obtained
from forecasts downscaled from a global EDA, and con-
sequently allow us to noticeably reduce the spin-up time
(Brousseau et al., 2016). As listed in Table 6, AROME-France
uses the same observation types that are assimilated in the
ARPEGE global model: conventional observations, radiances
from ATOVS, IASI (Guidard et al., 2011), AIRS, CRIS,
ATMS, SSMIS, MHS and GMI on board polar-orbiting satel-
lites, winds from AMVs and ASCAT, and ZTD measurements
from GNSS satellites. Compared to the ARPEGE system,
some of these observations are assimilated with different
set-ups: a shorter thinning distance for aircraft and IASI mea-
surements (respectively 25 and 90 km in AROME-France
versus 50 and 125 km in ARPEGE), particular AMSU-A and
IASI channel selections adapted to the lower AROME-France
model top and a different GNSS station acceptance list. In
addition to these observations, AROME-France also bene-
fits from screen-level measurements (temperature and relative
humidity at 2 m, and 10 m winds) and from reflectivities
(Wattrelot et al., 2014) and Doppler radial winds (Mont-
merle and Faccani, 2009) from the French radar network
(section 2.2.3). Raw pixel values of SEVIRI radiances on
board MSG have furthermore been preferred to the CSR
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product, deduced from cloud-free pixels over segments of
16×16 pixel squares, which is usually considered to be global
scale. As detailed in (Montmerle et al., 2007), this allows
the use of observations that are more representative of con-
vective scales while enabling radiances from water vapour
channels above low clouds, as defined by the SAF-NWP prod-
uct, to be retained. Using a posteriori diagnostics, Brousseau
et al. (2014) show that these high spatial density observa-
tions are the main information providers for analyzing the
finest model scales. Variational bias correction (Auligné et
al., 2007), provided by the ARPEGE system for shared obser-
vations or estimated in the AROME-France system itself for
its particular observations, is applied to satellite radiances and
ZTD–GNSS.

AROME-France provides 36–42 hr range forecasts five
times a day using Lateral Boundary Conditions (LBCs) syn-
chronously from the global model ARPEGE: at synoptic
times (0000, 0600, 1200 and 1800 UTC) the AROME fore-
cast uses LBCs from the ARPEGE forecast initialized at
the same analysis time (and the 0300 UTC AROME-France
forecast uses LBCs from the 0000 UTC ARPEGE forecast).
AROME-France long forecasts are thus launched with a delay
reaching 90 min after the analysis time, which allows them to
benefit from the next analysis of the hourly DA cycle provided
this analysis was previously performed using a preliminary
1 hr range forecast as a background. Denoting the forecast n
hours after the cycle time as t + n hours, the forecast initial-
ized with the analysis performed at t + 0 is updated with the
t + 1 analysis during the model integration using the IAU
(Bloom et al., 1996). The idea is to perform the last updated
forecast initialized at the main synoptic hours, compatible
with operational needs and respecting operational delivery
times. In this configuration, the IAU is not used for its filter-
ing properties and it has been demonstrated that such fore-
casts and forecasts initialized 1 hr later perform equivalently
(Brousseau et al., 2016).

2.2.3 Radar DA algorithms
High-resolution models are able to represent convective rainy
patterns which can influence the development of new precip-
itating systems through cold pools or gust fronts: small scales
cannot just adapt to large scales because of predictability lim-
itations. Thus, mesoscale analysis can be essential, and often
more important than lateral boundary conditions, for success-
ful forecasts of heavy rain events (the convective case-study in
section 3.3.1 is a perfect illustration). Since radial winds and
reflectivities from Doppler radar are still the only observa-
tions that allow us to assess the three-dimensional structures
of wind and humidity fields in precipitating areas, their con-
tribution to the AROME-France mesoscale analysis is crucial.
Volumes of Doppler radial winds were first assimilated in
the AROME-France 3D-Var configuration (Montmerle and
Faccani, 2009). In order to assimilate the radial wind, an
ad hoc observation operator, mainly based on Lindskog et al.

(2004) and Caumont et al. (2006), has been developed. The
broadening of the radar beam is taken into account through
a representation of the main lobe by a Gaussian function.
Furthermore, a specific Doppler wind preprocessing step
is applied, consisting of the application of two successive
nonlinear filters. These steps are essential as they allow us to
remove noisy pixels whose de-aliasing has failed, particularly
in highly turbulent areas where the Doppler power spectrum
width is broadening. An observation quality check against the
first guess is then applied. While Salonen et al. (2009) chose
to apply a “superobbing” (spatial averaging of raw measure-
ments) in order to reduce the representativeness errors, a thin-
ning strategy is classically applied to the remaining filtered
velocities to avoid the effects of the observation-error correla-
tions, which are neglected in the observation-error covariance
matrix.

As the radar reflectivity is a highly indirect observation of
the NWP model variables, it is difficult to extract useful infor-
mation about the main control variables from the observa-
tions. Moreover, with variational techniques, its assimilation
raises a number of questions concerning several fundamental
issues, such as:

1. the importance of accounting for relevant forecast errors
in precipitating areas as shown by Montmerle and
Berre (2010), in particular the multivariate relationships
between errors of hydrometeors and the thermodynamic
variables (Michel et al., 2011) or the vertical motion (Pagé
et al., 2007);

2. the nonlinearity of the observation operator which can
entail sub-optimalities during the minimization;

3. the “no-rain” issue, which occurs when there is no rain in
the first guess but the observation is rainy;

4. or the opposite case (Wattrelot et al., 2014, give more
detailed explanations).

In that context, research into radar reflectivity assimila-
tion has given some encouraging results in 3D-Var (Wang et
al., 2013a) and 4D-Var (Sun and Wang, 2013; Wang et al.,
2013b). Nevertheless, no operational applications have been
performed yet, particularly because only warm microphysical
processes are considered.

To circumvent these issues, an original 1D+3D-Var method
to assimilate radar reflectivity, based on the first tests made
in Caumont et al. (2010) using a research version of the
non-hydrostatic mesoscale assimilation system, was imple-
mented in the AROME system at Météo-France (Wattrelot
et al., 2014). The first step consists of a 1D-Bayesian inver-
sion (based on a discretization of the formulation of Bayes’
theorem to get the best estimate of relative humidity pro-
files of the model state) that uses accurate simulations of
the equivalent reflectivity factor of the model counterpart at
the observation location, and in its vicinity. Thus, assuming
that the errors of the observations and simulated observa-
tions are Gaussian and uncorrelated, a column of relative
humidity pseudo-observations (yHU

po ) corresponding to each
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observed column of reflectivity yZ can be computed as a linear
combination of relative humidity columns from the model
background state in the vicinity of the observation (xHU

i )
weighted by a function of the difference between observed
and simulated reflectivities:

yHU
po =

∑
i

xHU
i

exp
{
−Jpo(xi)

}
∑

j exp
{
−Jpo(xj)

} (11)

with

Jpo(x) =
1
2
{yZ − HZ(x)}TR−1

Z {yZ − HZ(x)}, (12)

where HZ(x) is the simulated reflectivity and RZ is the
observation-error covariance matrix. Equation 11 can be
interpreted as one particle filter formulation, in which “neigh-
bouring” vertical columns in the first-guess field are treated
as prior ensemble members. Following sensitivity studies,
the vicinity of the observation has been chosen to be a mov-
ing window of 13 × 13 columns spread uniformly within a
200 km × 200 km square centred on the observation loca-
tion. The assumptions for the reflectivity observation operator
𝐻𝑍 , largely discussed in Wattrelot et al. (2014), were cho-
sen in order to provide a good compromise between a realistic
simulation (which takes into account cold processes and an
accurate modelling of the radar beam) and the need to adapt
to the massively parallel code AROME. Once retrieved, the
humidity profiles enter a screening procedure where a specific
quality check is done to control a posteriori the convergence
of the 1D Bayesian inversion. As for the radial velocities, hori-
zontal spatial thinning is used to reduce the representativeness
errors.

The assimilation of radar reflectivities alone gave a pos-
itive impact on quantitative precipitation forecasts. Adding
Doppler radial winds also improved the quality of the
low-level winds. This is due to the complementary nature
of the two observation types and the multivariate balance
operators used to model B (Berre, 2000).

Using these techniques, the radial velocities and the reflec-
tivities observed by the national ARAMIS radar network
have been operationally assimilated in AROME-France since
the beginning of the operational suite in 2008 and 2010,
respectively. Their impact in the system has subsequently
increased with the adoption of hourly DA cycling in 2015.
The 1D+3D-Var technique to assimilate reflectivities has
since been successfully tested in HARMONIE-AROME (see
below) and is used operationally by JMA, as described in
section 2.6.

2.2.4 HARMONIE-AROME DA
The configuration of the AROME DA and forecasting sys-
tem as run by the countries in the HIRLAM consortium is
usually referred to as HARMONIE-AROME. The adaptation
of the AROME physics for HARMONIE has been described
by Bengtsson et al. (2017). The DA part consists of surface
DA and upper-air variational DA. There are some differences

in each local implementation of the HARMONIE system, in
particular concerning observation usage for upper-air DA.

The baseline background-error statistics have been
obtained by downscaling forecasts from the ECMWF
ensemble DA system and applying the HARMONIE con-
figuration of the AROME forecast model. Statistics have
also been derived by using ensemble DA within the
HARMONIE-AROME system itself. Observation usage
for the baseline upper-air DA is restricted to conventional
types of in situ measurements and ATOVS AMSU-A and
AMSU-B/MHS radiance measurements from polar-orbiting
satellites. Systematic errors are frequently present in
many of the satellite-based measurements and are handled
through adaptive variational bias correction (Auligné et al.,
2007).

In local pre-operational and operational HARMONIE
implementations, the observation usage includes satellite
radiances from the IASI and ATMS instruments, as well
as ASCAT wind measurements. ZTD measurements from
GNSS satellites are assimilated (Arriola et al., 2016) as well
as AMVs and Mode-S EHS winds obtained from air traffic
control systems and GNSS radio-occultations. Last, but not
least important, radar reflectivities, pre-processed to relative
humidity profiles, are assimilated. These can be obtained for
most European weather radars through the OPERA network
(section 4.2.2). In research experiments Doppler radar radial
winds have also been assimilated, aiming for operational
implementation. Other observation types revealing encourag-
ing results in DA experiments are radiances from the SEVIRI
instrument on board the geostationary MSG satellites as well
as assimilation of the cloud cover products obtained from the
nowcasting SAF.

A crucial challenge for limited-area DA is how to best uti-
lize information from the larger-scale host model in nested
DA. ECMWF operational forecasts, with a 6 hr lag, provide
the LBCs. In the baseline HARMONIE-AROME, upper-air
DA system spectral mixing of large-scale host model infor-
mation with smaller-scale HARMONIE-AROME model data
is applied in a step prior to upper-air DA (Müller et al., 2017).
The characteristic scale of the spectral mixing is dependent
on a rather empirically selected vertically dependent mix-
ing wave number. An alternative, more attractive, approach
is to incorporate the host model information in the cost func-
tion through a large-scale error constraint (Guidard and Fis-
cher, 2008; Dahlgren and Gustafsson, 2012) which has been
applied for reanalysis purposes, but further refinements are
needed.

2.2.5 ALADIN/LACE data assimilation
Member countries of the ALADIN consortium have taken
part in the implementation of limited-area variational DA
tools (Fischer et al., 2005; Bölöni, 2006). The use of
upper-air observations in the operational suites varies across
the 16 ALADIN member countries depending on the local
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availabilities of the different types of observation. A closer
cooperation of Central European ALADIN countries formed
into the RC LACE consortium (Austria, Croatia, the Czech
Republic, Hungary, Romania, Slovakia and Slovenia). Due to
the strengthened partnership of RC LACE countries, nowa-
days more than ten operational DA systems exist employing
increased numbers of national observations in NWP anal-
yses over LACE domains. Since configurations vary (e.g.
resolution, use of observations) within RC LACE, we denote
only general properties in Tables 3–6. In many of those
DA systems, the so-called RUC (Benjamin et al., 2004)
method further extends the capabilities of applied 3D-Var
(Mile et al., 2015). The Slovenian 3D-Var three hourly RUC is
a good example of such a system, where the efficiency of the
increased analysis frequency is magnified by the operational
use of MRAR observations (Strajnar, 2012; Strajnar et al.,
2015).

The idea of combining large scales analyzed by a host
global model with a high-resolution LAM background or
analysis has received great attention (Yang, 2005; Brožková
et al., 2006; Guidard et al., 2006; Guidard and Fischer, 2008;
Wang et al., 2014). Within RC LACE the DF idea led to
development of the DF blending method (Brožková et al.,
2001) which came into operational use in 2001. DF blend-
ing can be seen as a pseudo-assimilation method since it
incrementally adds large scales from a global model anal-
ysis to a high-resolution ALADIN background. This gives
initial conditions that are clearly better than pure dynamical
adaptation of the global model analysis, as small scales are
better captured in ALADIN than in the global model analysis.
DF blending is implemented in spectral space and consists of
several steps:

1. first global and LAM spectra are truncated to a cut-off
wavelength given by an empirical formula (Derková and
Belluš, 2007);

2. this is followed by filtering with a non-recursive
Dolph–Chebyshev digital filter (Lynch et al., 1997);

3. at the end the ALADIN background is incremented with
the difference between the filtered models’ spectra inter-
polated back to high resolution.

As an extension to DF blending, Široká et al. (2001) proposed
a method called BlendVar in which a 3D-Var assimilation is
performed after DF blending. Since DF blending is preserv-
ing aspects of a global analysis, it is expected that it will
provide a better start for 3D-Var than the ALADIN back-
ground itself. Guidard et al. (2006) used BlendVar to assim-
ilate observations from Intensive Observing Period 14 of the
Mesoscale Alpine Programme with a positive impact on pre-
cipitation forecasts. Encouraged by the findings of Guidard
et al., the BlendVar method was operationally implemented
within RC LACE in the Czech Republic in 2015.

2.3 Met Office 3D-Var

The Met Office’s variational DA is designed so that it can
be used for both global and limited-area grid-point mod-
els, in either 3D-Var or 4D-Var mode (Lorenc et al., 2000;
Rawlins et al., 2007). The global model system uses 4D-Var
with a 6 hr cycle. Although an hourly 4D-Var system at con-
vective scale went operational in July 2017 (section 4.3.2
gives an outline), we choose to describe here the cheaper
3D-Var system with a 3 hr cycle, which has featured in var-
ious earlier Met Office operational models since 1999. The
3D-Var system uses FGAT and initialization is performed by
the IAU scheme to introduce analysis increments gradually
as a tendency forcing term over a 2 hr window centred on the
nominal analysis time. The observation cut-off is t + 75 min.

Forecast-error covariances in the UKV model are cur-
rently specified climatologically through the so-called
NMC method (Parrish and Derber, 1992) although a
flow-dependent hybrid system is now implemented in the
global model (Clayton et al., 2013). They are computed
from forecast differences between different runs of the model
driven by the same lateral boundary conditions – the so-called
“lagged” NMC method (Široká et al., 2003). The input fore-
cast fields are valid at t + 6 and t + 3 hr on successive cycles.
When calibrating the latest covariances, the horizontal control
variable transform is applied to each model level, provid-
ing a spectral representation as a function of total horizontal
wavebands, and the vertical transform subsequently computes
a full vertical covariance matrix for each waveband (Berre,
2000; Gustafsson et al., 2001; Brousseau et al., 2011). This
approach allows horizontal correlations to vary with height
and vertical correlations to vary with horizontal length-scale.
In the UK model, the vertical structure functions are modi-
fied by the introduction of a vertically adaptive grid (Piccolo
and Cullen, 2011; 2012), which deforms grid points verti-
cally in regions of large static stability prior to applying the
parameter transform. This helps ensure that the climatologi-
cal covariance correlations are appropriately applied around
temperature inversions in particular. Limited-area analyses
use the same humidity control variable as the global system
(Ingleby et al., 2013).

The operational UKV model grid has an inner area of fixed
1.5 km grid spacing and an outer region with 4 km×4 km grid
boxes at the corners and 1.5 km×4 km in the remainder of the
outer domain. There are 70 vertical levels of a hybrid-height
coordinate, which is terrain-following at the surface and
locally horizontal at the top of the domain, reaching 40 km
above the surface (Tang et al., 2013). The analysis grid, how-
ever, is of fixed 3.3 km grid spacing across the whole model
domain. At the boundaries, the unbalanced pressure, humid-
ity and logarithm of aerosol control variables are constrained
to be zero. The streamfunction is zero and the velocity poten-
tial has zero normal gradient at the boundaries, consistent
with the vector wind having zero normal components at the
boundaries. In practice, numerical discretization of partial
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derivatives and grid staggering means that the increments are
not identically zero at the boundaries after being transformed
back to model variables. This approach relies on a good qual-
ity large-scale forecast; it assumes that the large-scale forcing
cannot be improved using the observations inside the limited
domain, most of which will have been available to the driving
model.

In terms of observation usage, the UKV model assimi-
lates a number of extra sources of high-resolution information
not present in the global system. For example, screen-level
temperature and humidity data from roadside sensors are a
valuable supplement to the SYNOP network. High-resolution
AMVs from MSG are also available. A radar-based precipi-
tation rate analysis is assimilated via the technique of LHN
(Jones and Macpherson, 1997; Macpherson, 2001) as well as
Doppler radial wind data from UK weather radars (Simonin
et al., 2014). A novel feature is the variational assimilation
of visibility observations (Clark et al., 2008). The visibil-
ity observation operator is a highly nonlinear function of
humidity, aerosol content and temperature.

Cloud fraction data are also assimilated directly in 3D-Var
(Renshaw and Francis, 2011). There are two kinds of cloud
data, which are assimilated independently. The first, known
as GeoCloud profiles, are based only on satellite cloud-top
information, and consist of a cloud fraction profile with zeros
above the cloud top, one or more layers of non-zero cloud
fraction representing the observed cloud layer, and missing
data beneath. The number of layers of cloud inserted is height
dependent, and drawn from a UKV model climatology of
cloud thickness. The second category is cloud from surface
reports, which are also inserted with a thickness derived from
model climatology.

2.4 DWD and the COSMO consortium – KENDA
(LETKF)

The DWD and its partners have recently developed the
KENDA system (Schraff et al., 2016) for the COSMO
model (Baldauf et al., 2011), which is a non-hydrostatic
convection-permitting model, whose main specifications are
given in Table 3. The DA algorithm used in KENDA is based
on an LETKF (section 2.1.4) applied in a 1 hr cycle with each
analysis step assimilating conventional data from 59 to 0 min
prior to the analysis time (Table 6). The LETKF is combined
with LHN (Stephan et al., 2008) of every ensemble member
towards radar-estimated surface precipitation (Tables 4 and
6).

To sample the background-error covariance, a 40-member
ensemble is currently used. Each member consists of the prog-
nostic variables for the three-dimensional wind components,
temperature, pressure perturbation, specific humidity, cloud
water and ice. The prognostic variables of TKE, rain, snow,
and graupel are excluded from the analysis update. When
used at DWD, each ensemble member is driven by LBCs
from one member of the ICON (Zängl et al., 2015) LETKF

ensemble which has a resolution of 40 km globally and 20 km
over Europe. At MeteoSwiss, the LBCs are derived from the
deterministic ECMWF high-resolution forecasts with a 6 hr
lag plus ensemble perturbations from the ECMWF ensemble
with 30–36 hr lag in order to ensure a large enough spread.

In KENDA, domain localization with a weighting of the
observations is used to calculate the analysis separately at
every grid point within the model domain using observations
within a horizontal radius from the analysis point (e.g. Hunt
et al., 2007; Janjić et al., 2011). Within certain limits, the hor-
izontal radius is chosen adaptively in such a way that a fixed
number of observations is always assimilated in the vicinity
of an analysis grid point (Periáñez et al., 2014). This results in
a half-length-scale of the Gaspari and Cohn covariance func-
tion (Gaspari and Cohn, 1999) of around 100 km (Lange and
Janjić, 2016) for assimilation of conventional data given in
Table 6 when the number of observations is chosen to be 100
(2.5 times the number of ensemble members). In the vertical,
the localization is height dependent and varies in the range of
0.075–0.5 in logarithm of pressure.

The background-error covariance derived from the ensem-
ble does not adequately represent the uncertainty of the back-
ground field due to both sampling and model error. Several
mechanisms are introduced to alleviate the effects of under-
estimated ensemble covariances. In KENDA, the methods of
background covariance inflation, adaptive covariance local-
ization, RTPP and random surface perturbations are used.

The RTPP scheme (Zhang et al., 2004) relaxes the analy-
sis ensemble perturbations towards the background ensemble
perturbations at every grid point of the model. As shown in
Zhang et al. (2004), this technique is beneficial when the ini-
tial background is not accurate. Depending on the spread of
LBCs, it can inflate or deflate the ensemble (Schraff et al.,
2016). Furthermore, the variance of the analysis is artificially
increased only where observations are present (Zhang et al.,
2004; Whitaker and Hamill, 2012). Multiplicative inflation
(Anderson and Anderson, 1999) in KENDA is adaptive with
a multiplicative covariance inflation factor applied separately
for every coarse analysis grid point (Li et al., 2009). Whitaker
et al. (2004) and Whitaker et al. (2008) report that multiplica-
tive inflation generates either too much spread in regions less
constrained by the observations or too little spread in areas
with high observational coverage. The need for so many dif-
ferent techniques is a result of each method resolving only
certain aspects of model and sampling errors. For example,
since localization does not affect the variances themselves, the
combination of multiplicative inflation and the RTPP scheme
is usually used to deal with the sampling problem (Whitaker
and Hamill, 2012). Random perturbations of soil moisture
content with two horizontal correlation length-scales of 10
and 100 km are applied after each analysis update to partly
account for the uncertainty in the soil conditions. These
perturbations turned out to increase the low-level tempera-
ture and humidity spread, resulting in a larger weight being
given to the observations and an improvement in analysis
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and forecast skill (Schraff et al., 2016). The effect of the soil
moisture perturbations is particularly noticeable in summer
conditions. Soil moisture perturbations and SPPT (Buizza et
al., 1999; Bouttier et al., 2012) were able to increase the tem-
perature (humidity) spread by 62% (31%) near the surface and
6% (5%) at 700 hPa in a one-month summer experiment and
to slightly reduce the root-mean-square error (RMSE). This
illustrates the sensitivity of the LETKF to model error and
the need to account for it. To further account for this, additive
covariance inflation based on random samples of the clima-
tological atmospheric background-error covariances from the
global EnVar DA system for ICON has been added recently to
the operational KENDA system at DWD. However, this has
not yet been used in the tests with KENDA shown in section 3.

Rapid updates in high-resolution models often lead to prob-
lems with balance and noise. It has been found that computing
the upper-air pressure analysis increments using hydrostatic
balancing of analysis increments (Rhodin et al., 2013) reduces
the noise that projects onto surface pressure tendencies, and
it is the only balancing method currently applied (apart from
a saturation adjustment).

Finally, the observation-error covariance matrix is assumed
to be diagonal for all observation types and the Desroziers
method (Desroziers et al., 2005) is used to tune the
observation-error variances in KENDA. The inclusion of
additional observation types in KENDA is currently ongoing.
For example, in research experiments Doppler radar reflectiv-
ity (Bick et al., 2016) has also been assimilated using a newly
developed observation operator (Zeng et al., 2016), as well as
the Meteosat SEVIRI-derived cloud information (Schomburg
et al., 2015), SEVIRI radiances (Harnisch et al., 2016) and
Mode-S EHS data (Lange and Janjić, 2016).

2.5 NOAA

The NOAA NCEP provides high-resolution, convection-
permitting forecasts for the USA with two analysis and fore-
cast systems: the 3 km CONUS-NAM (Rogers et al., 2017)
and the HRRR (Benjamin et al., 2016).

The CONUS-NAM nest features an hourly DA cycle and
issues free forecasts out to 60 hr four times per day (0000,
0600, 1200, and 1800 UTC). The LBCs for the CONUS
nest come from the 12 km North American parent domain.
The CONUS-NAM nest provides support for users in need
of convective-scale information (severe weather, heavy rain-
fall, renewable energy, and winter weather events) out to time
ranges of about 2.5 days.

The HRRR is a 3 km, hourly updating convection-
permitting implementation of the Advanced WRF model, run
operationally at NCEP since September 2014. The HRRR
produces forecasts every hour out to 18 hr over a domain
covering the entire CONUS, using initial and lateral bound-
ary fields from the hourly update 13 km RAP (Benjamin
et al., 2016). The HRRR has many applications for users
who need frequently updated numerical weather guidance on

time-scales of hours to a day, for severe weather, aviation and
renewable energy applications.

Both systems employ a hybrid 3DEnVar technique
(section 2.1.3; Table 4) which is used for the assimilation
of a wide variety of conventional and satellite observations
(Table 6). The implementation of hybrid 3DEnVar in each
system does not involve running a system-specific ensemble,
but rather makes passive use of the EnKF members associ-
ated with the NCEP global model’s DA. This approach has led
to immediate significant improvements in forecast skill (Wu
et al., 2017) while research efforts continue toward construct-
ing an appropriate convection-permitting ensemble suitable
for DA covering the large CONUS domain.

The CONUS-NAM nest begins its DA cycle 6 hr prior to
the advertised cycle time. The first-guess atmospheric state
provided at the start of the assimilation window is specified
by a 6 hr forecast from NCEP’s global DA system. However,
the model land states are maintained from the previous cycle
(i.e. the global model land states are not used). Following a
hybrid 3DEnVar analysis is a 1 hr forecast issued to provide
the background for the next analysis time. After each hybrid
3DEnVar analysis, except for the very first analysis using
a global background, a non-variational cloud and precipita-
tion hydrometeor analysis is applied to specify clouds and
precipitation in more statically stable regions. For the initial-
ization of each of the forecasts during the cycling procedure,
a radar-reflectivity-derived latent heating tendency is applied
during the forward part of the model digital filter initialization
to introduce observed deep convection into the model. This
hourly forecast/analysis process continues for a 6 hr period
until the advertised cycle time is met and a 60 hr forecast is
issued.

In the HRRR, each cycle begins 1 hr prior to free-forecast
initialization via interpolation of initial conditions from its
coarser 13 km parent domain. The representation of small
scales is then enhanced during this 1 hr period through
sub-hourly radar reflectivity DA with a latent-heating method.
At the end of this 1 hr period, a hybrid 3DEnVar analysis is
performed which is then followed by a non-variational cloud
and precipitation hydrometeor analysis, similar to the one
described for the CONUS-NAM nest. Following the cloud
analysis, an 18 hr forecast is issued.

2.5.1 Cloud analysis and radar-derived latent heating
As has been noted, both the CONUS-NAM nest and HRRR
systems depend upon the use of a cloud analysis technique
along with the application of radar-derived latent heating ten-
dencies to effectively introduce cloud and convective-scale
information.

The cloud and precipitation analysis scheme (Hu et al.,
2006) is applied to specify clouds and precipitation in more
statically stable regions using a combination of METAR
ceilometers and GOES cloud-top pressures along with back-
ground saturation (or subsaturation) to improve retention
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of the cloud features. Radar reflectivity observations, in
traditionally stratiform precipitation areas, are used to retrieve
and specify rain and snow hydrometeors.

Three-dimensional radar reflectivity information is further
assimilated through a latent-heating method (Benjamin et al.,
2016). A heating rate is computed from reflectivity as follows:

𝐿𝐻 (i, j, k) =
(

p0

p

)Rd∕cp
(
(Lv + Lf) f [Ze]

cpt

)
, (13)

where 𝐿𝐻 is the latent heating rate (K s−1), p is pressure
(hPa), p0 = 103 hPa is the surface pressure, Lv is the latent
heat of vaporization (J kg−1), Lf is the latent heat of fusion
(J kg−1), Rd is the dry gas constant (J kg−1K−1), cp is the spe-
cific heat of dry air at a constant pressure (J kg−1K−1), f [Ze]
is the reflectivity factor converted to rain/snow condensate
(kg kg−1), and t is the time period of condensate formation (s).

During a short period of forward model integration, the
temperature tendency from the model’s microphysics scheme
is replaced with this reflectivity-based temperature tendency
(i.e. LH). Essentially, observation-based forcing is intro-
duced into the model where precipitation is occurring, and a
response in the model’s dynamic, thermodynamic, and micro-
physical fields develops during the forward integration. This
computationally inexpensive approach promotes mesoscale
circulations and/or convective-scale structures in regions of
ongoing observed precipitation while suppressing develop-
ment of these features in regions of radar coverage where
precipitation is not observed (≤0 dBZ), by setting the micro-
physical temperature tendency to zero.

Several tunable parameters control the strength, location
and duration of the specified latent heating. The strength
of the specified heating is modulated through a time-scale
over which reflectivity-producing precipitation condensates
are assumed to have formed with typical values ranging
from 10 min for the CONUS-NAM nest to 20 min for the
HRRR (t in Equation (13)). A shorter (longer) assumed time
period forces a stronger (weaker) latent heating rate. The loca-
tions of latent heating specification are controlled through
an observed reflectivity threshold, below which the model’s
microphysical tendencies are permitted to evolve freely, as is
done in regions with no radar coverage. A reflectivity thresh-
old of 28 dBZ has been chosen for the CONUS-NAM nest
and HRRR to target precipitating regions mostly associated
with relatively deep (above 200 hPa) moist convection. In the
CONUS-NAM nest, latent heat specification during a 20 min
model integration is combined with a DFI that reduces noise
in the subsequent forecast (Benjamin et al., 2004; 2016). As
mentioned previously, the HRRR is initialized with a full hour
of latent heating using a time-varying temperature tendency
based on sub-hourly radar data, without DFI. Figure 1 demon-
strates the positive impact of this radar-reflectivity-derived
latent heating initialization technique in the CONUS-NAM
nest via statistically significant improvement in FSS (Roberts
and Lean, 2008) for composite radar reflectivity ≥30 dBZ for
the first 5 hr of the forecast.

FIGURE 1 Fractions skill score (FSS) verification with a 25 km box size
for forecast composite radar reflectivity ≥30 dBZ as a function of forecast
hour covering 0000, 0600, 1200, 1800 UTC forecast initialization cycles
over a 5-day period for 5–10 May 2015. Red lines (CONUS NESTX
(experiment), i.e. the operational configuration) depict the forecast with
radar-reflectivity-derived latent heating applied during the model digital
filter initialization. Black lines (CONUS NEST) depict the forecast without
the radar enhancement applied during the model digital filter initialization.
The black dotted line is the difference in FSS between the two experiments
and shows standard median error confidence intervals. Bold confidence
intervals indicate significance at the 95% level (i.e. the confidence intervals
do not encompass zero)

Furthermore, lightning flash density and cloud-growth
observations provide convective-scale information beyond
regions of radar coverage (e.g. oceans). In the initialization
of the operational CONUS-NAM nest and HRRR, lightning
flash density is converted into a proxy reflectivity field (Liu
et al., 2017) which is combined with the radar reflectivity
field; the combined reflectivity field is assimilated through
the latent-heating method described previously. In experi-
mental HRRR versions, observations of rapidly growing deep
clouds are assimilated in a similar manner.

2.5.2 Radar data QC
Since May 2005 NCEP has had real-time access to level-II
radar data from the Doppler weather radar network of the
USA. Using these real-time Doppler radar data in operational
DA requires that the data be processed reliably and efficiently
through rigorous data QC methods. Such methods have been
developed and implemented in the radar data processing sys-
tem at NCEP (Liu et al., 2016). The radar data QC for process-
ing real-time radar data consists of six major components:

1. detect and remove non-meteorological echoes (Jiang et al.,
2013; Tang et al., 2014);

2. correct or remove aliased radial velocities (Xu et al.,
2011);

3. remove unqualified returns when the radar antenna is
aimed at the sun;

4. calculate QC statistical parameters;
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5. identify and remove contamination from migrating birds
with a Bayesian method (Liu et al., 2005; Zhang et al.,
2005b) and dual polarization-based QC; and

6. statistically remove noisy and other bad-quality data as
indicated by QC parameters falling outside the range of
significant probability.

The radar data processing system has been implemented in
operations for more than eight years and has been proven
to be efficient and effective (Liu et al., 2016). Following
QC, these Doppler radial velocities are assimilated into the
CONUS-NAM nest system.

NCEP also employs a radar reflectivity mosaic algorithm
based upon procedures developed at the National Severe
Storms Laboratory. The QC methods are used to generate
hourly and sub-hourly three-dimensional reflectivity mosaics
and two-dimensional derived products (Zhang et al., 2005a)
which are then used in the CONUS-NAM nest and HRRR
DA systems through the aforementioned cloud analysis and
radar-derived latent heating techniques.

2.6 Japan Meteorological Agency – Operational
limited-area DA systems

JMA operates two limited-area NWP systems, called
Meso-scale and Local NWP systems, aiming to enhance
disaster prevention and aviation forecasting.

The Meso-scale NWP system runs MSM forecasts every
3 hr out to 39 h (Table 3). The MSM domain covers Japan
and its surrounding area at a horizontal grid spacing of 5 km
with 817 × 661 horizontal grid points. MSM uses 76 verti-
cal layers reaching a height of 21.8 km. The forecast model
of MSM is the non-hydrostatic model ASUCA (Ishida et al.,
2009; 2010; Hara et al., 2012; Aranami et al., 2015). LBCs
for MSM are obtained from the Global Spectral Model (GSM;
JMA, 2016) forecasts, with a lag of 3 hr for 0300, 0900, 1500
and 2100 UTC or 6 hr for 0000, 0600, 1200 and 1800 UTC
runs.

The MSM forecast is initialized using 4D-Var
(section 2.1.1) in the MA (Tables 4 and 5), which is based on
JNoVA. MA uses an incremental approach. After calculation
of innovation vectors at a resolution of 5 km, variational opti-
mization of analysis increments runs with a larger horizontal
grid spacing of 15 km using 38 vertical layers. MA 4D-Var
does not use the TL model in forward time integrations. Its
forward model is the nonlinear version of the JMA-NHM
(Saito et al., 2006; 2007), but with simplified physics
schemes. Thus, the trajectory over the 3 hr assimilation
window is updated in each optimization iteration, approx-
imately 30 times a run, using the nonlinear forward model
at a horizontal grid spacing of 15 km. The adjoint model
consists of the adjoint of the linearized dynamical core and
a limited set of physics schemes (large-scale condensation,
planetary boundary layer and surface flux schemes, etc.).
The optimized analysis increment thus obtained is added to
the high-resolution first guess, and a 3 hr forecast over the

assimilation window runs at a resolution of 5 km to generate
the initial condition of the MSM. Each MA run uses the
result from the previous evolved MA analysis as the first
guess, forming a 4D-Var DA cycle.

Control variables of the MA 4D-Var are the eastward and
northward wind components u and v, respectively, potential
temperature 𝜃, surface pressure ps and scaled specific humid-
ity q∕qb

sat, where qb
sat is saturation specific humidity of the

background state. The background error is taken to be homo-
geneous over the domain, and its profiles are estimated by the
NMC method (Parrish and Derber, 1992), taking the differ-
ence between 6 and 12 hr MSM forecasts valid at the same
time, taking two samples a day from the first ten days of each
month over a historical one-year period of operational MSM
forecasts. Vertical correlation between 𝜃 and ps background
errors is taken into account, but other variables are assumed
to be independent. Hydrostatic balance is also assumed. The
diagnosed level of geostrophic balance was small in the sam-
pled training data. Digital filter initialization is applied as
a weak constraint (Gauthier and Thépaut, 2001), using a
penalty term to produce a more balanced analysis.

The observation cut-off time is 50 min past the nominal
MSM analysis time t. Observations from t − 3.5 hr until
t+0.5 hr are assimilated, apart from observations which were
assimilated in the previous assimilation cycle. Observations
are collected in hourly batches when computing the cost
function. Besides conventional observations, MA utilizes
various satellite and remote-sensing data (Table 6). JMA
operates Doppler radars and wind profiler networks over
Japan, and MA uses radial velocity, reflectivity and wind
observational data from these systems, which are important
sources of information on detailed atmospheric situations
that could cause severe weather events. Relative humidity
pseudo-observations are generated from reflectivity data
of both ground-based and satellite radars, and are used as
inputs to 4D-Var (section 4.2.4). Variational bias-correction
coefficients from the latest global analysis are applied to
satellite radiances. GNSS radio occultation and ground-based
GNSS data are assimilated as refractivity and total pre-
cipitable water data, respectively. Precipitation rates from
radar/rain-gauge composites and satellite microwave imagers
are also assimilated.

The Local NWP system runs the LFM, which has an even
higher horizontal resolution of 2 km, and 58 vertical layers
reaching up to a height of approximately 20.2 km (Table 3).
LFM uses ASUCA as its forecast model to provide 9 hr
forecasts every hour over the domain covering Japan and its
surrounding area with 1531 × 1301 grid points. MSM fore-
casts, lagged 3, 4 or 5 hr depending on the LFM initial time,
are used as LBCs for LFM.

The higher resolution of LFM makes it possible to
resolve more detailed structures of atmospheric states, tak-
ing into account small-scale terrain effects and other atmo-
spheric forcings, which can lead to localized severe weather
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events. LFM rapidly updates the forecast, promptly reflect-
ing observational information newly received from one hour
to the next. An efficient DA system is required in order
to realize the high-resolution and high-frequency operation
of this system. To this end, LA applies a 3D-Var scheme
(section 2.1.1) to initiate LFM forecasts (Tables 4 and 5).
LA uses ASUCA-3DVar, which is a 3D-Var version of
ASUCA-Var, the variational assimilation system based on the
ASUCA forecast model (Aranami et al., 2015; JMA, 2016).

In each hourly operation, LA iterates 3D-Var analyses and
1 hr forecasts in turn over 3 h, starting from 3 hr before the
LFM initial time. This 3D-Var cycle runs at a resolution of
5 km, with 48 vertical layers. Each LA operation uses a zero, 1
or 2 hr MSM forecast, initiated using MA 4D-Var, as the first
guess at the beginning of the cycle.

The control variables of LA 3D-Var include ground and
underground temperature (Tg) and volume water content
(VWCg) in addition to those of MA. This extension of the
control variables aids assimilation of surface temperature and
satellite soil moisture observations. Background-error pro-
files of the LA control variables are also estimated using
the NMC method. Different vertical background-error covari-
ances are applied for vertical columns on land or over sea.
A vertical coordinate transform is also used to moderate
terrain-following profiles exceeding given altitudes.

For the hourly LA runs with nominal analysis time t, the
observation cutoff time is t+0.5 h. In each LA run, obser-
vations from t−3.5 to t+0.5 h, including delayed data not
received in time for the previous LA run, are assimilated in
3D-Var assimilation cycles for t−3, t−2, t−1 and t h. Assimi-
lated observations include conventional, remote-sensing and
satellite data as in MSM (Table 6). Land surface temperature
and wind observations from the automated surface station
network over Japan (AMeDAS) are used ahead of other anal-
ysis systems at lower resolutions at JMA, reflecting detailed
atmospheric conditions of local environments near the sur-
face. Satellite radiance and soil moisture data, both with
variational bias correction, were introduced in January 2017
(section 4.2.4).

3 IMPACT OF DA AND OBSERVATIONS
AT CONVECTIVE SCALES

3.1 Impact of DA

Now that operational global models are approaching 10 km
resolution, it is natural to ask how we can benefit from
convective-scale DA. A related issue is the impact of the qual-
ity of the LBCs. A few examples will be given in this section.
The general problems for DA over a small model domain are
first illustrated by applying the HARMONIE-AROME sys-
tem over Iran (section 3.1.1). Then the benefit from applying
convective-scale DA, versus downscaling of large-scale ini-
tial data, for precipitation forecasting is illustrated for both
the KENDA and the AROME-France systems (section 3.1.2).

Furthermore, the impact of using more advanced DA
algorithms is illustrated in section 3.1.3.

3.1.1 Downscaling versus convective-scale DA and the
importance of LBCs – HARMONIE over Iran
Figure 2 shows standard deviations of the differences between
the forecasts and the observations for 500 hPa temperature
and 2 m temperature from three experiments in a small model
domain over Iran. Experiment ERA-NODA is a simple down-
scaling from ECMWF re-analyses (ERA) to HARMONIE
with LBCs also derived from ERA analyses, ERA-DA uses
HARMONIE 3D-Var DA with LBCs derived from ERA anal-
yses. Finally, OPER-DA is an experiment with HARMONIE
3D-Var DA with LBCs derived from operational ECMWF
forecasts (6 hr lag). The experiment OPER-DA was selected
to be a typical scenario for applying convective-scale NWP
at a small weather service. The model domain consisted of
600×500 horizontal grid points, a 2.5 km horizontal resolu-
tion and 65 vertical levels. The period of the experiments was
1–15 December 2013.

The experiment ERA-NODA should be interpreted as a
simulation rather than a forecast experiment and results in
rather flat verification scores as a function of forecast length
(Figure 2). Introducing DA (experiment ERA-DA) with the
same analysis LBCs gives improved verification scores for
the first 12–24 hr for 500 hPa temperature and 2 m tempera-
ture. This is due to the finer resolution of the HARMONIE
3D-Var assimilation but also to the assimilation cycling of
the HARMONIE model state. The effect of the assimilation
cycling is more pronounced for the 2 m temperature due to the
high-resolution model state adjustment to the complex orog-
raphy in the Iran area. The time series of 2 m temperature
verification scores (not shown) indicated a gradually improv-
ing impact of DA over the period, most likely an effect of the
HARMONIE soil and surface DA (with slower time-scales).
Comparing the ERA-DA and OPER-DA experiments, we
can see that the LBCs influence the forecast quality quite
quickly over the small model domain, particularly in the free
atmosphere.

3.1.2 Downscaling versus convective-scale DA – KENDA
and AROME-France
Figure 3 compares the impact on deterministic precipitation
forecasts of initial conditions taken from KENDA or interpo-
lated from the ICON-EU model. The deterministic ICON-EU
model has a horizontal resolution of 7 km and is based on
the operational 3DEnVar analysis of the ICON system. The
FSS is plotted corresponding to 30 km × 30 km regions for
0.1 and 1.0 mm h−1 over the period from 26 May to 9 June
2016, which had frequent local severe weather conditions.
The scores were averaged over all 0000, 0600, 1200, and
1800 UTC forecast runs and show improved precipitation
forecasts up to lead times of 18 hr if initial conditions are taken
from KENDA analyses.
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FIGURE 2 Standard deviation forecast scores for verification of (a)
500 hPa temperature against radiosonde observations and (b) 2 m
temperature against SYNOP stations. The HARMONIE forecasting system
was applied to a small model domain over Iran. ERA-NODA (red solid line)
repesents downscaling (no DA) from ERA re-analysis data with ERA data
also on the lateral boundaries. ERA-DA (green dashed line) represents DA
with ERA analyses on the lateral boundaries. OPER-DA (blue dotted line)
represents DA with 6 hr lagged ECMWF forecasts on the lateral boundaries

Similar results are obtained when comparing operational
AROME-France forecasts using convective-scale DA and
AROME-France forecasts starting from initial conditions
interpolated from the global ARPEGE system. The lat-
ter uses a stretched horizontal grid reaching a peak 7 km
resolution over France and performs 4D-Var analyses with
two outer loop iterations (using 130 and 50 km resolutions in
turn) in a 6 hr cycle (section 2.1.2). Operational and down-
scaled AROME-France forecasts use the same LBCs from the
ARPEGE model and the same surface initial conditions from
the operational AROME-France surface DA cycle. Figure 4
displays Brier Skill Scores for 6 h cumulative rainfall fore-
casts computed from 30 hr forecasts produced by these two
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FIGURE 3 The FSS (Fractions Skill Score) corresponding to areas of
30 km × 30 km for (a) 0.1 and (b) 1.0 mm h−1 1 hr precipitation verified
against radar-derived precipitation as a function of forecast lead time for a
convective two-week period from 26 May to 9 June 2016. The red solid line
denotes forecasts started from KENDA, and the black line forecasts started
from interpolated ICON-EU coarser-scale analyses. Note the effect of
spin-up time in the first 4 hr for forecasts started from interpolated
ICON-EU coarse-scale analysis

configurations over the seven-month convective time period
from 1 May to 1 November 2016. The evolution of the score
difference as a function of forecast range clearly indicates that
the initial conditions provided by the convective-scale DA,
which are representative of convective-scale phenomena and
adapted to the model resolution and to the accurate topog-
raphy description, significantly improve the forecast perfor-
mance during the first 12 hr for all precipitation thresholds.
Smaller improvements also exist at longer forecast ranges for
the higher thresholds which are likely to be linked to con-
vective activity. However, they are not statistically significant
as the LBC signal dominates with increasing forecast range
in both cases. An illustration of expected improvement for
a strongly convective event is given in section 3.3.1. During
winter periods, when precipitation is mainly driven by the
synoptic circulation correctly analyzed by global DA systems,
it is more difficult to demonstrate the improvement provided
by convective-scale DA.
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(a) (b)

(c) (d)

FIGURE 4 Regional Brier Skill Score, calculated against 2050 automatic rain gauges over the French territory for 6 hr cumulative rainfall. The score is
computed for threshold exceedances of (a) 0.5, (b) 2, (c) 5 and (d) 10 mm and estimated using a neighbourhood of radius 50 km. Red dotted line:
AROME-France forecasts started from ARPEGE initial conditions. Solid blue line: operational AROME-France forecasts with convective-scale DA. The blue
dots indicate the forecast ranges where BSS differences are statistically significant (95%) using a bootstrap test. Higher scores reflect improved forecast skill
(Amodei and Stein, 2009)

3.1.3 Influence of DA methods – KENDA initial conditions
versus nudging combined with multi-model perturbations
Due to the strong nonlinearities and stochastic properties
of convection, the forecast for convective scales should be
probabilistic. To illustrate this, we compare the ensemble
prediction from the COSMO-DE model configuration (Bal-
dauf et al., 2011) using KENDA initial conditions with the
operational ensemble prediction system COSMO-DE-EPS of
DWD (Gebhardt et al., 2011). The initial conditions of the lat-
ter system are based on deterministic nudging analyses using
perturbations derived from four different operational global
model systems. The comparison covers a one-month convec-
tive summer period from 26 May to 25 June 2016. Precipi-
tation verification is shown in Figure 5 with the Brier Score
components for resolution and reliability at the 1 mm h−1

threshold as a function of lead time for the 1200 UTC runs.
Forecasts using KENDA initial conditions maintain an advan-
tage lasting up to a day for both resolution and reliability.

In terms of CRPS, large improvements can be seen in
Figure 6 for 2 m temperature, 2 m relative humidity and 10 m
wind up to one day. The CRPS decreases (improves) by
7–15% in the first 6 hr and to about 5% later. This is pri-
marily a result of the strong increase of spread in KENDA
for 2 m temperature and 2 m relative humidity, and moder-
ate increase of spread in 10 m wind speed, compared to the
EPS (not shown). Furthermore, there is also a decrease of the

RMSE of up to 10%, particularly during the early stages of
the forecast. On the other hand, there is an increase in the
night-time warm bias and dry bias measured in terms of rel-
ative humidity, which results in an increased RMSE at night
for lead times beyond 6 hr (not shown).

3.2 Impact of observations

Radar data have been used for DA in a few National Meteoro-
logical Services for several years using different techniques,
such as 1D+3D-Var, 4D-Var and nudging (Caumont et al.,
2010; Wang et al., 2013b; Simonin et al., 2014). The devel-
opment of convection-resolving models highlights the need
for high-resolution observations which are relevant to the
weather situations that the models aim to describe. The sec-
ond source of high-resolution observations that have become
available in recent years is Mode-S EHS. Both of these
datasets will now be discussed.

3.2.1 Internationally collected radar data
In preparation for the OPERA redistribution of quality-
controlled radar volume data over Europe (section 4.2.2 gives
more details), Ridal and Dahlbom (2017) demonstrated the
possibility of using a multi-country set of radar data, in
this case over a domain covering nine countries surround-
ing Denmark. In this framework, the HIRLAM consortium
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FIGURE 5 (a) Resolution and (b) reliability of hourly precipitation for a threshold of 1 mm h−1 as a function of forecast lead time, from 1200 UTC forecast
runs for the period from 26 May to 25 June 2016. The red line denotes forecasts started from KENDA initial conditions, and the black line operational
COSMO-DE-EPS forecasts

FIGURE 6 Change in CRPS (%) by using KENDA initial conditions
against the operational COSMO-DE-EPS for surface variables (a) 2 m
temperature, (b) 2 m relative humidity, (c) zonal and (d) meridional
components of 10 m wind, for a lead time of 27 h, averaged over 0000 and
1200 UTC EPS forecasts for the period 26 May to 25 June 2016

developed a pre-processing scheme capable of handling radar
volumes from multiple countries using OPERA’s ODIM
HDF5 format. Quality control filters using the BALTRAD
QC package were first imposed, then the HDF5 file struc-
tures were harmonized by correcting missing or incorrectly
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FIGURE 7 Relative humidity verified for one month (November 2016)
against radiosondes using HARMONIE-40h1.1 on the Danish NEA
domain. The control run (red solid lines) lacks radar data while the
experimental run (green dotted lines) includes OPERA radar reflectivities
from 12 countries. The mean (BIAS, open squares) and the standard
deviation (STDV, solid squares) of the differences between the forecasts and
the observations are shown

placed metadata, and finally a simple thinning algorithm
including QC flags was applied. A neutral to positive impact
on the forecast skill scores was achieved with the thin-
ning algorithm alone. Figure 7 shows one month of relative
humidity verification against radiosonde observations from
45 stations for the Danish North European domain (NEA)
using HARMONIE-40h1.1 with and without assimilation of
radar reflectivity. Positive improvement can be seen for levels
between 850 and 500 hPa in the form of a reduction in both
bias and standard deviation. The impact on other parameters
was more neutral in this verification.

These results show not only the feasibility of the data usage
with regards to availability, timeliness and format conven-
tion, but also encouraging results in forecast verification. In
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order to improve data usage, the thinning has recently been
further developed using a super-obbing algorithm inspired by
the work of Lindskog et al. (2004). OPERA’s upcoming redis-
tribution of quality-controlled volume files and radial wind
data will make the European radar network fully usable for
the NWP community.

3.2.2 Mode-S EHS and the IMPACT experiment
Recently a method was developed to derive wind and temper-
ature information from aircraft within the range of Mode-S
EHS tracking and ranging radar (de Haan, 2011). By com-
bining ground vector, air-speed, heading and Mach number
as provided by each individual aircraft, temperature and wind
information can be inferred. Using radar data from the air traf-
fic control at Schiphol airport, de Haan and Stoffelen (2012)
showed that Mode-S EHS wind information thus obtained is
of a quality comparable to AMDAR wind observations, while
Mode-S EHS temperature is of lower quality than available
with AMDAR near the surface; at 10 km altitude the temper-
ature quality is comparable. de Haan (2015) showed using
triple collocation that the wind observation error is around
1–1.5 m s−1. The Mode-S EHS dataset is a high-resolution
observation set both with respect to spatial and temporal den-
sity, as can be seen in Figure 8. The data are obtained from
Maastricht upper air control (MUAC) covering Benelux and
German air-space. The vertical extent of the data range from
ground level to the upper flight levels at around 100 hPa.

The Mode-S EHS observation frequency depends on the
scanning period of the radar, which can be between 4 and 20 s.
At present the observations are made available in batches of
15 min duration with a 5 min latency. However, note that the
coverage of low-level aircraft observations is limited to the
locations and operating hours of airports. As a consequence,
fewer observations are collected between midnight and the
early morning hours. Apart from this, Mode-S EHS can be
considered as an important observation set for constraining
the atmospheric dynamics of high-resolution NWP models
when describing small and rapidly moving weather phenom-
ena, for example. Improvements in the 3 hr forecast when
assimilating Mode-S EHS data have been shown by de Haan
and Stoffelen (2012) and Lange and Janjić (2016). To investi-
gate the impact on forecasting performance of several obser-
vation sets, including Mode-S EHS, the observation-impact
experiment IMPACT was established.

For the period 15 November to 31 December 2013,
several DA experiments have been performed with the
HARMONIE-AROME 3D-Var and also the more advanced
4D-Var (section 4.3.1).

The experiments were run using Mode-S EHS combined
with conventional observations. The Mode-S EHS data were
spatially thinned to 25 km and in the case of 3D-Var only data
within 15 min of the analysis time were selected. Both 3D-Var
and 4D-Var yielded a positive impact on forecasting perfor-
mance for a comprehensive list of parameters, with 4D-Var

FIGURE 8 Illustration of Mode-S EHS data coverage in terms of the
lowest observed height on 13 February 2014

generally leading. The impact in terms of standard deviation
and bias is usually noticeable for at least 3–6 hr and longer for
4D-Var. Figure 9 shows the performance of 24 hr forecasts,
verified against surface observations, during the IMPACT
period for 2 m temperature over the Netherlands, in case of
3D-Var, 4D-Var and a 3D-Var without observations. In terms
of standard deviation for the differences between the forecasts
and the observations, 4D-Var is leading over 3D-Var, while
the bias shows a reduction both for 3D-Var and 4D-Var for
lead times up to 9 h. Inspection of the nonlinear evolution
of the analysis increment reveals that the increment remains
coherent for longer with 4D-Var. For wind profiles, the largest
impact is around 400–600 hPa, where most of the Mode-S
EHS data originate. However, there is a distinct drying out
and warming of the lower troposphere with 4D-Var, as was
also reported by Strajnar (2015). As a result, the negative
temperature bias is reduced. For 1200 UTC specific humidity
profiles, the drying turns out to be beneficial when compared
to radiosonde profiles. The lowest standard deviation and
near-zero bias for specific humidity are achieved with 4D-Var.
For the 0000 UTC specific humidity profiles, 4D-Var again
gives the lowest standard deviation below 700 hPa and similar
performance to 3D-Var above 700 hPa. However, the already
negative bias below 700 hPa becomes more pronounced for
4D-Var (up to −0.05 g/kg at 700–850 hPa). Overall 4D-Var
performance using mainly wind observations is also encour-
aging for parameters associated with moist processes. In
Figure 10 this is illustrated for the daily cycle of cloud cover
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FIGURE 9 Temperature at 2 m standard deviation (top curves) and bias
(bottom curves) for forecasts over the Netherlands, verified against surface
observations during the IMPACT period, for 3D-Var (blue), 4D-Var (black)
and 3D-Var without observations (red)

FIGURE 10 Daily cycle of total cloud cover given by 3D-Var without use
of observations (purple) or with conventional observations and Mode-S
EHS in 3D-Var (green) and 4D-Var (blue). The observed cloud cover is also
given (orange)

given by 3D-Var and 4D-Var in comparison to a 3D-Var refer-
ence experiment without the use of observations. The superior
performance of 4D-Var is also noticeable in the ability to
forecast precipitation (Figure 11). For various choices of fore-
cast lead time and thresholds, the FSS indicates that 4D-Var
performs better. Here the FSS is shown for accumulated pre-
cipitation exceeding 0.3 mm over 3 hr and with a 12 hr lead
time. Motivated by these positive results, it is envisaged that
in the near future observations associated with humidity,
such as radar and GNSS, will also be tested in HARMONIE
4D-Var.

3.3 Case-studies

3.3.1 Strong convective precipitation
On 3 October 2015, a strong southerly flow brought very
unstable air from the Mediterranean Sea over the French

FIGURE 11 Fractions skill score as a function of horizontal scale for 3 hr
accumulated precipitation with a forecast lead time of 12 hr and a threshold
exceeding 0.3 mm. Results are shown for 3D-Var without observations
(purple), 3D-Var (green) and 4D-Var (blue) using conventional observations
and Mode-S EHS

Riviera, located on the southern flank of the Alps. As a result
and as displayed in Figure 12a, heavy convective precipita-
tion exceeding 100 mm h−1 occurred in the Cannes region
between 1500 and 2100 UTC, which unfortunately caused
twenty casualties and much damage in this urban area.

The 0000 UTC cycle AROME forecast starting from a
dynamical adaptation of the operational ARPEGE analy-
sis at global scales clearly failed to forecast this particu-
larly localized convective event (Figure 12b). The opera-
tional AROME suite, which assimilates a comprehensive set
of observations every hour (listed in Table 6), noticeably
improved the forecast by creating precipitation in the right
locations but underestimating the intensities (Figure 12c).
The 0300 UTC cycle forecast clearly benefits from data
which were successively assimilated in the three intermedi-
ate assimilation cycles, especially conventional data, radar
observations and SEVIRI radiances in clear air (Figure 12d).
The simulated intensities are indeed much more realistic
while the main precipitating structure is still accurately
located.

3.3.2 Frontal rainband over the Netherlands
In section 3.2.2 the impact of Mode-S EHS on general scores
was considered, thereby taking into account the entire testing
period. The improvement on forecast performance as a result
of assimilating Mode-S EHS data can be complemented with
case-studies. An example of this is presented in Figure 13,
which shows the improvement to the forecast wind speed and
direction with a lead time of 12 hr due to the assimilation of
Mode-S EHS in addition to conventional observations during
the passage of an intense rain band. The addition of Mode-S
EHS indeed allows us to improve the predicted arrival time
and orientation of the rain band (de Bruijn et al., 2016, give
more details).
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(a) ANTILOPE QPE Forecast from dyn. ad. at 0000 UTC

Oper forecast from analysis at 0300 UTC mm/6 hr

mm/6 hr

Oper forecast from analysis at 0000 UTC

(b)

(d)(c)

FIGURE 12 Accumulated rainfall (mm h−1) over southeast France between 1500 and 2100 UTC on 3 October 2015 deduced from (a) ANTILOPE
quantitative precipitation estimation computed by blending radar and rain-gauge data, (b) the AROME forecast starting from an interpolated large-scale
ARPEGE analysis at 0000 UTC, and the operational AROME forecast starting from the (c) 0000 UTC and (d) 0300 UTC assimilation cycles
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FIGURE 13 Time series on 28 May 2013 of 12 hr HARMONIE-AROME
forecasts of (a) wind direction (degrees) and (b) wind speed (m s−1) at 10 m
for Cabauw (The Netherlands), using conventional data (purple lines) and
additional Mode-S EHS data (blue lines). The observed values are depicted
by red lines

4 CHALLENGES

4.1 What observations do we ideally need at convective
scales, in particular cloud-related observations?

Convective-scale models explicitly represent convection and
generally experience a rapid evolution of weather systems.
Furthermore, they can exhibit low predictability for the con-
vective systems that are of principal interest (Lilly, 1990;
Hohenegger and Schär, 2007; Keil et al., 2014). Overcom-
ing these challenges requires the assimilation of spatially

dense and temporally frequent observations, either of the
prevailing environmental conditions related to convection in
some way, or of the convection itself. The relative importance
of larger-scale environmental conditions versus fine-scale
details of convective systems is an ongoing field of research
as there is a shortage of basic studies on fundamental aspects
of atmospheric predictability on these scales. However, bet-
ter knowledge of these fundamental issues would be impor-
tant for deciding which initial condition variables are most
important on which scales. A comprehensive overview of our
current knowledge on what is and what should be observed
for high-resolution NWP, as well as the different existing
instruments providing such information, is given by Mont-
merle (2016). Mode-S aircraft observations (section 3.2.2) are
promising, but well-constrained initial conditions will addi-
tionally require better use of various remote-sensing obser-
vations. In recent years, GNSS total delay observations have
been added in several regional DA systems (Macpherson et
al., 2008; Bennit and Jupp, 2012; Arriola et al., 2016) and
show benefits for constraining the humidity field which is
only poorly observed by conventional observations. Radar
is another valuable data source for convective-scale models,
which, as discussed in section 2.2.3, allows us to analyze
thermodynamically coherent structures within precipitating
systems. Moreover, progress with algorithms is under way
to further improve the assimilation of high-density radar
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data (section 4.2.1) and also dual-polarimetric radar data
(section 4.2.3).

Therefore it seems crucial to facilitate better use of satel-
lite observations in convective-scale modelling systems. In
this respect, regional models mostly lag far behind global
modelling systems and only a very small fraction of the
available observations is assimilated. Geostationary satellites
today provide observations with a spatial resolution similar to
the model grid (kilometres) and a time resolution of 15 min
or less. The assimilation of cloud-affected and cloud-related
observations is particularly promising. Introducing all-sky
satellite observations in global modelling systems has been
one of the major advances in recent years. The potential is
even greater for convective-scale models as clouds exhibit
the first area-wide observable aspect of convective systems.
This is also reflected in the fact that observation-based now-
casting systems rely heavily on geostationary satellite obser-
vations, in particular for the identification of convective
systems through the cloud signal and the evolution of bright-
ness temperature that indicates the evolution of the cloud-top
height. The three major challenges for the improved use of
cloud-affected satellite observations are (i) improved assimi-
lation concepts for cloud-affected observations, (ii) improved
model representation (parametrization) of cloud particles and
(iii) improved observation operators.

The first challenge is related to the nonlinearity associated
with clouds and the non-Gaussianity of observation depar-
tures. Recent developments showed that the non-Gaussianity
of cloud-affected infrared observations can be mitigated
through the use of cloud-dependent error models (Harnisch
et al., 2016), following the work of Geer and Bauer (2011) for
microwave channels. Nonlinearity still poses a severe chal-
lenge, but this may be mitigated through the use of different
control variables in DA.

The second and third challenges can lead to systematic
deviations of observations and model equivalents such as
simulated brightness temperatures that are very sensitive to
model and operator assumptions on particle size distribu-
tion, particle shape and sub-grid cloud cover. In consequence,
errors of simulated cloud-affected observations are typically
much larger than for clear-sky conditions and more work is
required to minimize systematic deviations. Another aspect is
that channels in the visible and near-infrared range are cur-
rently ignored in DA although they potentially provide a lot
of information on clouds. This is partly due to the lack of
suitable observation operators for these channels, but recent
work demonstrated the feasibility of efficiently calculating
realistic satellite images in the visible range (Kostka et al.,
2014; Scheck et al., 2016). Figure 14 shows a synthetic satel-
lite image over Germany in the visible range calculated from
a short-term forecast by the regional model COSMO-DE
and histograms of observed and simulated reflectances aver-
aged over a one-month period. After accounting for the most
important three-dimensional radiative transfer effect, the vari-
ation of reflectance with the inclination of cloud tops, the

distribution of simulated reflectances (green line) is fairly
realistic. Further optimization of this operator is ongoing and
it is planned to include the operator in the RTTOV model in
the near future.

Besides satellite observations, there are also various
promising ground-based remote-sensing instruments whose
data could be assimilated in regional DA. Many countries
already operate networks for the detection of lightning and
ceilometers which detect cloud-base height and the height
of the atmospheric boundary layer. Several other instruments
(e.g. wind and humidity lidars) have recently significantly
reduced in price, which may facilitate the installation of such
networks in the near future. Furthermore, information from
observations made for various other purposes could be used in
DA. Many new mobile phones have sensors for pressure and
temperature (Madaus and Mass, 2016), many countries oper-
ate roadside sensors for visibility and temperature or icing,
many new cars have temperature and visibility sensors that
transmit their observations to networks while wind and solar
power generation are potentially useful sources of informa-
tion. The challenges for assimilating such observations vary
for each type. Information on lightning or boundary layer
and cloud-base height is hard to use in DA, wind and water
vapour lidars are limited by the cost of installation and main-
tainance, while obtaining information from energy companies
in real time is a challenge for power generation observa-
tions. It is therefore essential to conduct further studies on
those observations which are are potentially most useful in
order to prioritize efforts towards network installation and
assimilation system development.

4.2 Better use of satellite and radar data

4.2.1 Treatment of correlated observation errors
With the development of high-resolution models, the efficient
use of observations at high density in DA is becoming increas-
ingly important. Indeed, under the assumption of uncorrelated
observation errors, a large amount of data has to be discarded
by horizontal spatial thinning to avoid degrading the fore-
cast (Liu and Rabier, 2003). Recent theoretical studies on the
impact of the specification of radar observation errors suggest
that the positive effect of data thinning could be enhanced if it
were possible, for such high-density observations, to neglect
also the error correlations of the background (Jacques and
Zawadzki, 2014; 2015). Another common method to coun-
teract spatial or inter-channel observation-error correlations
for satellite radiances is error inflation. But this method is
sub-optimal as it artificially down-weights observations from
these instruments (Weston et al., 2014). Another disadvan-
tage of this observation-error variance inflation method of
dealing with correlated observation errors is that it removes
small-scale information that is vital for convection-permitting
models (Rainwater et al., 2015). Hence, there is a require-
ment to increase the quantity of observations used in the
assimilation system. Indeed, analysing smaller scales could
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FIGURE 14 (a) SEVIRI observation of the COSMO-DE domain for 0600 UTC on 3 June 2016, and (c) synthetic image computed with the one-dimensional
radiative transfer solver from the operational COSMO-DE forecast. (b) is as (c), but with an additional cloud-top inclination correction. To generate these
RGB images, the 0.6 μm reflectance was used for the red channel, the 0.8, μm reflectance for the green channel and the mean value of the 0.6 and 0.8 μm
reflectances for the blue channel. (d) Average 0600 UTC reflectance histograms for SEVIRI observations (grey) and model equivalents with (green) and
without (red) cloud-top inclination taken into account for the period 28 May to 30 June 2016 (L. Scheck, personal communication)

improve the predictability of the assimilation system (i.e.
sections 2.2.3 and 2.5.1). As a consequence, there is a need
to both reduce the data thinning and better specify the spa-
tial and inter-channel correlated observation errors to enhance
the spatial information extracted from satellite radiances or
ground radar data.

In that context, the attempt to assimilate radar data (in par-
ticular Doppler radial wind) with a spatial horizontal density
higher than 15 km in the 2.5 km convective AROME model
was a failure. Nevertheless, positive impact was obtained
with 8 km spatial density in the assimilation system using a
higher horizontal resolution of 1.3 km (Wattrelot, 2016). This
suggests that better represention of fine scales (in the 1.3 km
horizontal resolution against 2.5 km) contributes to a clear
reduction in the part of the observation-error correlations
induced by the errors of “representation” (i.e. part of error of
representation that occurs when the observations can resolve
scales that the model cannot (Janjić et al., 2017).

When the Met Office trialled Doppler radial winds in a
1.5 km model/1.5 km analysis grid hourly cycling 3D-Var sys-
tem (Simonin et al., 2014), positive benefit from the hourly
data were found with much denser data (every 1.5–3 km
depending on range). Therefore the impact of observations
may depend on the observation pre-processing, design of
the assimilation system, observation mix, assumed obser-
vation and background errors and the method for assess-
ing benefit. In July 2011, when Doppler radial winds were

introduced operationally into the Met Office UK 3 hr cycling
3D-Var system with a 4 km model/4 km analysis grid and
the subsequent variable resolution UKV system described in
section 2.3 (1.5 km grid in the domain interior/3 km analy-
sis grid over the whole domain), an 8 km and 6 km thinning
was used, respectively. This was partly for cost reasons but
also to make some allowance for horizontal correlation of the
observation errors.

Estimates of spatial and inter-channel observation-error
characteristics for clear-sky sounder radiances have been
a posteriori diagnosed by Bormann and Bauer (2010),
for cloudy microwave imager radiances (Bormann et al.,
2011) and by Stewart et al. (2014) for IASI inter-channel
observation-error correlations. The inter-channel error corre-
lations have been accounted for in the assimilation (Weston
et al., 2014; Bormann et al., 2016; Campbell et al., 2016)
and shown to have positive benefit. The Met Office currently
accounts for inter-channel radiance error correlations in the
operational global and UK regional systems for AIRS (Aqua),
IASI (METOP A and B) and CRIS (SUOMI) instruments.

The Hollingsworth and Lönnberg (1986) method has
historically been used to estimate observation-error variances
but it is very difficult to clearly separate the FG departure
correlations into a combination of a spatially correlated obser-
vation error and a spatially correlated FG error, especially
at small separation distances. For radar data, estimates of
such observation-error statistics have been first a posteriori



1246 GUSTAFSSON ET AL.

diagnosed in the Météo-France AROME assimilation system
(Wattrelot et al., 2012) and results indicate that the obser-
vation errors have a correlation length-scale of more than
10 km. These diagnostics are based on Desroziers et al.
(2005) but also on methods that rely on an estimate of the
background-error covariance matrix using a forecast ensem-
ble as in Bormann and Bauer (2010). Similar results have
been found by Waller et al. (2016b) for Doppler radial
winds using the Met Office’s UKV model and Desroziers
et al. diagnostics. However, current methods for estimat-
ing observation-error covariances could be improved. New
research and better methods will be needed in this area
to accurately characterize observation-error correlations and
thus better extract small-scale information from high-density
observations.

Studies have also been performed for SEVIRI geostation-
ary radiances (Waller et al., 2016c) and AMVs (Cordoba
et al., 2017). These found long implied horizontal correlation
length-scales. Currently the Met Office is trialling a system
to allow for horizontally correlated Doppler radial winds.

Recent research advances at Météo-France to evaluate
the quality of the methods used for calculating correlated
observation errors have shown that the estimated corre-
lated observation errors for Doppler radial winds could
be underestimated for the smallest separation distance
(Wattrelot et al., 2016). This last work was based on
using an additional diagnostic, the lag-innovation covariance
described in Daley (1992) and Ménard (2016). The diagno-
sis based on the lag-innovation covariances suggests a longer
observation-error length-scale and is consistent with theoreti-
cal insight in Waller et al. (2016a) which shows that the results
are strongly dependent on specific underlying assumptions
and very difficult to interpret if absolutely no information is
known a priori on the nature of these statistics.

4.2.2 International collection of radar data
Europe has a complex radar network, predominantly of
C-Band type, with reasonable coverage, which contains a
potential wealth of useful information for NWP (Figure 15).
The EUMETNET program for radar data (OPERA) has etab-
lished a unified file format, the OPERA Data Information
Model (ODIM) using the HDF5 and BUFR formats, and a
continent-wide collection and redistribution set-up (Huusko-
nen et al., 2014). Each radar performs a full set of scans every
5–15 min and the national meteorological services broadcast
this (either in single-scan or full-volume format) directly to
OPERA. Although at present OPERA is only redistributing
two-dimensional post-processed radar composites, these data
will be available in a quality-controlled form for end-users in
the near future. It will then be possible to use the reflectiv-
ity (volumes, scans or derived products) from most radars in
Europe for the purpose of NWP. For example, the timeliness
of the reflectivity volume data is approximately 15 min after
the sampling time, which fulfils most needs. At the moment,
there is no requirement for radial winds to be redistributed

33
0˚

34
0˚

35
0˚ 0˚ 10

˚ 20˚

40˚

50˚

60˚

0 200 400

EUMETNET/OPERA Radar Network

2015/12

Legend:

S, C, X, S+X Non−Doppler
S, C     Doppler
S, C, X Polarimetric

FIGURE 15 The European radar stations included in the OPERA program.
S: S-band with wavelength 8–15 cm and frequency 2–4 GHz. C: C-band
with wavelength 4–8 cm and frequency 4–8 GHz. X: X-band with
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but it is hoped this will be done in the very near future. It is
important to report inconsistencies encountered and/or sug-
gestions back to the OPERA user group so that products can
be improved.

In the case of raw radar volume data used in DA, there
are several challenges that need to be addressed for the data
to be used beneficially. The presence of data contaminated
by ground and sea clutter, external emitters and beam block-
age needs to be flagged or compensated for. Furthermore,
for the successful use of these data it is still necessary to
perform quality checks to capture format issues that have to
be addressed, such as wrongly labelled, missing and/or mis-
placed metadata in the ODIM files, and thus to harmonize the
data so that all relevant information needed for the DA method
is in place.

4.2.3 Use of dual polarimetric radars
In addition to allowing for a better non-meteorological scat-
ter detection and a much better correction of the attenuation
of the signal, DPOL meteorological radars can provide
microphysical information of sampled precipitation, such
as the particle size distribution, as well as the shape and
thermodynamical phase of hydrometeors. The assimilation
of the main polarimetric variables, namely the differential
reflectivity Zdr, the specific differential phase Kdp or the
cross-correlation coefficient 𝜌hv, presents similar challenges
to those encountered when assimilating radar reflectivity in
the variational context (section 2.2.3). Moreover, the micro-
physics of the convection-permitting NWP model have to be
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able to provide realistic simulations of model counterparts to
these DPOL variables (Jung et al., 2010). Fortunately, Augros
et al. (2015) have shown that it is possible to obtain accu-
rate Kdp estimates which are sufficiently consistent with the
AROME model one-moment microphysics scheme.

The benefit of the assimilation of DPOL observations has
been tested in an operational context, with the constraints
of the AROME model and its 3D-Var assimilation system
(Clotilde Augros, personal communication). The impact of
DPOL observations on the precipitation forecast was found to
be slightly positive for periods of intense convection. In par-
ticular, the assimilation of the specific differential phase Kdp

alone, using the 1D+3D-Var assimilation method (Wattrelot
et al., 2014), has shown positive impact in regions of intense
convection affected by partial beam blockage.

4.2.4 JMA advances in assimilation of radar and satellite
observations
JMA has been assimilating data from GPM/DPR, a
space-borne radar developed by the JAXA and the NICT for
the GPM core satellite, since March 2016 (Ikuta, 2016d).
This improves the initial conditions around precipitating sys-
tems in ocean areas beyond the reach of ground-based radars.
The DPR assimilation method is an indirect method which
assimilates the relative humidity profile estimated from
radar reflectivity. Assimilation of GPM/DPR improves water
vapour in the initial conditions with the impact persisting to
improve precipitation predictions.

JMA introduced a VarBC for LA, making it possible
to reduce the negative impact of observation and obser-
vation operator bias in DA. As a result, JMA started
assimilating satellite clear-sky radiance data in LA using
RTTOV, with VarBC applied to the observation bias of
these assimilated data from various satellites (NOAA-15,
18, 19/ATOVS, METOP-A, B/ATOVS, Aqua/AMSU-A,
DMSP-F17, 18/SSMIS, GCOM-W/AMSR2, GPM-core/GMI
and Himawari-8). These satellite data are already assimilated
in MA, which currently applies the VarBC coefficients from
a global analysis based on a different model, and develop-
ment is in progress to renew MA VarBC in the near future.
As a result of the satellite radiance assimilation in LA, the
accuracy of temperature and water vapour profiles improved
in LFM forecasts. In addition, assimilating satellite radiance
data improved the forecast of precipitation resulting from
cumulus convection in the winter, because its influence on
the sea area was advected rapidly to the land area by the
strong seasonal wind.

4.3 Development of advanced methods

4.3.1 HARMONIE-AROME 4D-Var developments
The successful application of 4D-Var for operational global
(Rabier et al., 2000) and regional high-resolution NWP
(Gustafsson et al., 2012) motivated the development of
4D-Var for the convective-scale HARMONIE-AROME

system. A first step was the construction of a framework for
ALADIN 4D-Var (Soci et al., 2006). A second step was adap-
tation of this 4D-Var to AROME and the external surface
module SURFEX (Masson et al., 2013). In order to improve
the treatment of weak nonlinearities, this was followed by the
introduction of a multi-incremental minimization with the
possibility of using different horizontal resolutions in each
outer loop iteration (section 2.1.2).

The HARMONIE-AROME nonlinear model used in
full-resolution forecasting is non-hydrostatic, while the TL
and AD models applied in the quadratic minimization are
obtained by linearizing the hydrostatic version of the nonlin-
ear model. Furthermore, the physics of the TL and AD models
has so far been restricted to include simplified versions of
vertical turbulence and surface friction only (Buizza, 1994;
Janisková et al., 1997). A challenge is to introduce simplified
moist physics parametrizations, such that, for example, radar
reflectivity data can be assimilated efficiently.

HARMONIE-AROME 4D-Var also includes a weak
digital-filter constraint applied to the assimilation increment
in each outer loop iteration to damp the amplification of
high-frequency oscillations during the DA process. Such a
weak digital-filter constraint has turned out to work effi-
ciently for synoptic-scale DA windows with filters based on
cut-off periods on the order of 6 hr (Gustafsson et al., 2012).
However, it is not clear how such a constraint should be
applied optimally to assimilation windows with a length of a
few hours.

The HARMONIE-AROME 4D-Var has been tested using
a multi-incremental mimimization with an assimilation cycle
of 3 h, a 2 hr assimilation window with observations every
20 min (e.g. 2300–0100 UTC for nominal analysis time
0000 UTC with observations at 2300, 2320, 2340, 0000,
0020, 0040 and 0100 UTC), with two outer loop iterations
and an assimilation increment resolution of 5 km with the
HARMONIE-AROME model running with a horizontal grid
resolution of 2.5 km. Longer overlapping assimilation win-
dows may also be considered in order to determine more
dynamically consistent initial states.

Comparing HARMONIE-AROME 3D-Var and 4D-Var
experiments favours 4D-Var, both with regard to forecast
verification scores and the ability of the forecast model
to preserve the assimilated information over a longer
forecast range (section 3.2.2). Due to the (multi-)incremental
formulation of HARMONIE-AROME 4D-Var, the computing
time is not excessive and operational implementation of
HARMONIE-AROME 4D-Var is being considered.

4.3.2 Met Office 4D-Var
A convective-scale, hourly cycling 4D-Var system was imple-
mented operationally in July 2017 at the Met Office. The aim
is to provide fresher NWP output based on the latest obser-
vations to improve post-processing products in the 0–6 hr
forecast range and give improved warnings of severe weather
in the 0–12 hr period. Development of this configuration was
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motivated by a successful pilot study, the NDP, run for the
London 2012 Olympic and Paralympic Games (Ballard et al.,
2016). The NDP configuration was an hourly cycling 4D-Var
system covering southern England using a finite-difference
forecast model with a 1.5 km grid spacing and was itself
based in general terms on the coarser limited-area 4D-Var
system run operationally over a North Atlantic and European
domain. The operational version uses the same domain and
grid described in section 2.3 for the forecast model. The anal-
ysis grid over which the linear perturbation forecast model
is run is at fixed resolution. After some experimentation, a
4.5 km grid spacing has been chosen for reasons of economy
and stability.

The assimilation cycle uses a time window of t−30 to
t+30 min, with analysis increments added at the start of
the window. Initialization is via a digital filter penalty term
(Gauthier and Thépaut, 2001). The observation cut-off is
t+45 min and the same observation types available to the
3-hourly 3D-Var system are assimilated. Most are assimilated
at an hourly frequency, but Doppler radial winds are used
every 10 min and SEVIRI radiances and wind profilers every
15 min. Surface rain rate from radar is still assimilated via
LHN and with radar frames every 15 min. The shorter cut-off
does mean that some lower-tropospheric radiosonde data
arrive too late to be assimilated. However, the corresponding
upper-tropospheric radiosonde data can be used, by virtue of
the accurate treatment of balloon drift and assimilation of the
data at their correct times and locations rather than at nomi-
nal times and launch locations. The upper-atmospheric data
typically fall into the next hourly window after the one for
which the lower data arrive too late. VarBC of satellite data
is included, following its recent operational implementation
in the global model.

At present, forecast error covariances for the hourly 4D-Var
system are the same as those used in the 3-hourly 3D-Var
assimilation. This is a temporary situation and new covari-
ances will be derived from the hourly system itself and based
on training data at earlier forecast lead times than the t+6/t+3
forecast differences used in the calculation of the covariances
for 3-hourly 3D-Var.

4.3.3 HARMONIE hybrid 3DEnVar and 4DEnVar
The success on synoptic scales of the HIRLAM Hybrid
3DEnVar and 4DEnVar (Gustafsson and Bojarova, 2014)
combined with the ETKF-based ensemble rescaling
algorithm for ensemble generation applied at full model res-
olution (Bojarova et al., 2010) encouraged development of
similar algorithms for the HARMONIE system at convec-
tive scales. The HARMONIE EnVar assimilation algorithm
uses an augmented control vector space (section 2.1.3) and
provides a straightforward multi-scale extension (Buehner
and Shlyaeva, 2015). One could expect that a consistent
treatment of a wide range of scales is an essential feature
of a successful convective-scale DA scheme. However,
much development is still needed in order to extract the full

potential of a hybrid approach on convective scales. Expe-
rience with the HIRLAM 4DEnVar scheme indicates the
importance of a rich and dynamically mature ensemble to
capture flow-dependence. At the same time, the method-
ologies for generating an ensemble capable of meaningfully
sampling uncertainty on convective scales are generally still
at an early stage of development. Recently the LETKF assim-
ilation scheme has been implemented into the ECMWF IFS
code environment and it has also been tested in the HAR-
MONIE framework at convective scales with encouraging
results (Pau Escriba, 2017; personal communication). Many
scientific questions have not been answered yet. For example,
we need to investigate whether a sufficiently large ensemble
is affordable at full convective-scale model resolution on a
domain large enough to allow the convective phenomena to
develop. Alternatively, a compromise between the domain
size, model resolution and ensemble size needs to be found.

4.3.4 EnVars at Météo-France
Different flavours of EnVar (3DEnVar and 4DEnVar, hybrids)
are currently being tested in order to make the DA algorithm
more flow-dependent at the current operational resolution of
1.3 km. Their formulations follow the general idea described
in section 2.1.3, except that the minimization is based on
the DPCG algorithm (Derber and Rosati, 1989) with a
B-preconditioning. As explained in Desroziers et al. (2014),
this allows us to manipulate control vectors of the same size
as the model state in the conjugate-gradient iterative descent
algorithm in hybrid DA methods (i.e. without increasing the
size of the control vector).

To provide the background perturbations, an EDA
(Houtekamer et al., 1996), which is planned to run oper-
ationally at the end of 2017, has been built for AROME,
using explicit observation perturbations and explicitly per-
turbed LBCs from the operational global EDA (AEARP;
Berre et al., 2015). Vertically dependent optimal localization
length-scales have been retrieved from its 25 members for the
different control variables following Ménétrier et al. (2015).
In the 4DEnVar case, Lagrangian advection is furthermore
applied to the localization using a filtered wind from the
background, following work at global scales by Desroziers
et al. (2016).

4.3.5 Rapid update NWP for severe weather warnings at
NOAA
NOAA’s WoF project is developing high-resolution NWP for
very short (0–3 h) lead times which can enhance the warn-
ing process for convective storm hazards (Stensrud et al.,
2009). While significant challenges exist in producing reliable
probabilistic forecasts on convective time- and space-scales,
an existing prototype system has demonstrated promising
potential for this type of NWP to produce forecasts of con-
vective storms and systems that evolve realistically (Wheat-
ley et al., 2015; Jones et al., 2016). This prototype WoF
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system, a 3 km, 36-member convection-permitting ensem-
ble adjustment Kalman filter (Anderson et al., 2009), was
employed to assimilate Doppler radial wind velocity, reflec-
tivity, and satellite liquid and ice water path retrievals with
a 15 min interval. This system was demonstrated in real
time during the spring seasons of 2015 and 2016 and was
able to provide forecasts every 30 min which identified sig-
nificant severe weather events from ensemble-based prob-
ability swaths with lead times of as much as 3 h. While
several challenges remain, such as rapid observation pro-
cessing/ingestion, computational efficiency, representation of
model error, etc., these prototype results are encouraging.

4.3.6 Development of a JMA DA system based on the new
limited-area forecast model ASUCA
JMA is proceeding with a project to update the operational
limited-area DA system to a new system based on ASUCA.
The analysis/forecast cycle system based on ASUCA has
already been used operationally in the LA system. Devel-
opment of ASUCA 4D-Var is similarly under way. At the
same time, JMA is investigating ensemble and variational
hybrid DA as its next-generation DA system. The hybrid
method adds flow dependence to the background error using
the extended control variable method.

Ikuta (2016a) investigated the impact of assimilating obser-
vations with high temporal resolution using this hybrid
4D-Var. High temporal resolution observation data such as
radar, wind profiler, satellite and aircraft data have been
assimilated into an operational mesoscale 4D-Var system for
many years at JMA. However, these observational data are
thinned in time and assimilated at the nearest hour rather than
the correct observation time because the observation time slot
is fixed to 1 hr intervals. The new hybrid 4D-Var enables the
assimilation of observational data at the correct observation
times because observation time slots are not fixed. It has been
confirmed that the appropriate treatment of the observation
time is more effective with flow-dependent DA.

High-frequency observations such as radar reflectivity and
satellite radiances are needed to provide detailed information
about hydrometeors. In this regard, Ikuta (2016b) has devel-
oped a TL and AD model including a simplified six-class
three-ice one-moment bulk cloud microphysics scheme. The
scheme assumes that the growth of nonlinear perturbations
during the 3 hr assimilation window can be approximated
by the TL model. The AD model propagates the gradi-
ent of the cost function with respect to hydrometeors from
observation times of reflectivity and brightness tempera-
ture back to the beginning of the assimilation window. In
most cases, ice-phase information from observations is trans-
formed into water vapour information through the back-
ward integration with adjoint operators of the microphysics
scheme. Ikuta (2016c) shows the impact of the assimila-
tion of radar reflectivity data using the meso-scale hybrid
4D-Var DA system.

5 DISCUSSION AND CONCLUDING
REMARKS

DA methods for convective-scale NWP at operational centres
are surveyed in this article. The basic operational methods
include variational methods like 3D-Var and 4D-Var, ensem-
ble methods like LETKF and hybrids between variational
and ensemble methods. At several of the operational centres,
additional assimilation algorithms, like LHN, are utilized to
improve the model initial state, with emphasis on convective
scales.

The development of operational DA methods for
convective-scale NWP has followed the development of
methods for global DA with a time lag of several years.
Operational DA systems for convective-scale NWP at some
centres are still based on 3D-Var, while their DA systems
for global NWP have moved to more advanced methods like
4D-Var or 4DEnVar. From a scientific point of view this is
not satisfactory, since flow-dependence, which is introduced
by the more advanced methods, becomes more important at
convective scales. The reason is partly the difficulty of shar-
ing huge investments into DA software between the global
and convective-scale systems with higher priority being given
to the global version. Convective-scale DA has certainly
gained from the global inheritance, but it is possible that this
wish to share development resources has also hampered the
development of more-dedicated convective-scale methods.

To be successful, convective-scale DA requires access
to observations with convective-scale resolution. Such
observations exist and are used operationally, for example
weather radar and satellite observations. Radar reflectivity
observations are utilized operationally today, either via a
1D-Bayesian inversion to vertical moisture profiles or via
LHN, but better optimized methods for direct assimilation
of radar reflectivity data should also be investigated. In
order to utilize radar and satellite data more efficiently for
convective-scale DA, it is necessary to improve observation
operators and also observation-error statistics. Some early
attempts to derive models for spatial error correlations and
satellite radiance inter-channel error correlations have been
partly successful, at least for global DA, but these attempts
have also shown that access to a priori information about the
whole measurement process is needed.

Simultaneous assimilation of broadly distributed
observations, such as rawinsonde data, alongside compar-
atively dense observations, such as Doppler radial wind
velocity, presents practical challenges owing to these net-
works’ abilities to resolve different scales. This is especially
challenging when one considers that methods often employed
for modelling background-error covariances assume decor-
relation lengths associated with a fixed scale of motion, yet
an analysis that reflects many scales of motion is desired,
i.e. a multi-scale DA method is needed. To date, most efforts
have addressed this challenge through multi-pass methods,
where broadly distributed observations are assimilated first,
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followed by a second pass of the analysis system using
compartively shorter decorrelation lengths to assimilate the
high-resolution observations (Xie et al., 2011; Gao et al.,
2013; Xu et al., 2016). However such approaches require
somewhat subjective characterization of broad- and fine-scale
observations and neglect the fact that fine-scale observa-
tions do provide some information about the larger scales
and, correspondingly, broad-scale observations do contain
information pertinent to the finer scales. To address this
challenge, Buehner and Shlyaeva (2015) recently proposed
a scale-dependent background-error covariance localization
technique that avoids the need to split the observations and
analysis into dense and broad scales, thus allowing for the
use of all observations simultaneously. Future applications
of this technique to radar DA at convection-permitting time-
and spatial scales could prove to be quite interesting.

Ensemble methods and hybrids between ensemble and vari-
ational methods are under examination for convective-scale
DA at operational centres. In order to counteract the effects
of detrimental sampling errors due to the use of relatively
small ensembles, covariance localization methods need to be
applied. The reasons for this are twofold. One is that the
sampling error produces noisy background-error covariance
estimates, whose inclusion in the DA can make the analy-
sis inaccurate (Hamill et al., 2001). Secondly, the localiza-
tion increases the rank of the ensemble-derived covariances,
allowing for an analysis outside the space spanned by the
unlocalized background ensemble only. However, localiza-
tion can severely affect dynamical properties of the analy-
sis. It has been shown that rigorous localization in global
hydrostatic models can disturb geostrophic balance (Kepert,
2009; Greybush et al., 2011) or conservation laws (Zeng and
Janjić, 2016). Due to the multiple atmospheric scales that are
present in the limited-area models, on the one hand the local-
ization radius needs to be large enough not to disturb the
known balances of the large-scale flow and in that way not
endanger reliable environmental forecasts necessary for good
convective-scale forecasts. On the other hand, the localiza-
tion radius would need to be small to capture the convective
cells when assimilating radar data, for example. Currently,
the decision about how large the localization radius should
be depends on the size of the ensemble. By applying their
methodology based on the optimal linear filtering theory,
Ménétrier et al. (2015) have indeed shown that localization
lengths are inversely proportional to the size of the ensemble,
and that its optimal values can be diagnosed directly from the
ensemble.

To summarize, in order to make further progress in
development of DA for convective-scale NWP at opera-
tional centres, we have identified the need to strengthen
research efforts with regard to observation operators, mod-
els for observation-error statistics, multi-scale DA, generation
of convective-scale ensembles and covariance localization.
There is also need for more research on balances at con-
vective scales and on practical ways to represent balances

as well as model error in advanced DA systems. We should
also keep in mind that nonlinear effects and moist physical
processes become more important when we include the con-
vective scales in our DA and forecasting process. For this
reason, it may become necessary to move towards nonlinear
DA methods like particle filters, or hybrids between particle
filters and those methods that we have discussed in this article.
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Janjić, Z.I. (2003) A non-hydrostatic model based on a new approach. Meteorology
and Atmospheric Physics, 82, 271–285. https://doi.org/10.1007/s00703-001-
0587-6.
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Deneke, H. (2014) The Hans-Ertel Centre for Weather Research – Research
objectives and highlights from its first three years. Meteorologische Zeitschrift,
23, 193–208. https://doi.org/10.1127/0941-2948/2014/0558.

Weston, P.P., Bell, W. and Eyre, J.R. (2014) Accounting for correlated error in the
assimilation of high-resolution sounder data. Quarterly Journal of the Royal
Meteorological Society, 140, 2420–2429. https://doi.org/10.1002/qj.2306.

Wheatley, D.M., Knopfmeier, K.H., Jones, T.A. and Creager, G.J. (2015)
Storm-scale data assimilation and ensemble forecasting with the NSSL Exper-
imental Warn-on-Forecast System. PartI: radar data experiments. Weather and
Forecasting, 30, 1795–1816. https://doi.org/10.1175/WAF-D-15-0043.1.

Whitaker, J.S. and Hamill, T.M. (2012) Evaluating methods to account for sys-
tem errors in ensemble data assimilation. Monthly Weather Review, 140,
3078–3089. https://doi.org/10.1175/MWR-D-11-00276.1.

Whitaker, J.S., Compo, G.P., Wei, X. and Hamill, T.M. (2004) Reanalysis with-
out radiosondes using ensemble data assimilation. Monthly Weather Review,
132, 1190–1200. https://doi.org/10.1175/1520-0493(2004)132<1190:
RWRUED>2.0.CO;2.

Whitaker, J.S., Hamill, T.M., Wei, X., Song, Y. and Toth, Z. (2008) Ensemble data
assimilation with the NCEP global forecast system. Monthly Weather Review,
136, 463–482. https://doi.org/10.1175/2007MWR2018.1.

Wicker, L.J. and Skamarock, W.C. (2002) Time splitting methods for elastic mod-
els using forward time schemes. Monthly Weather Review, 130, 2088–2097.
https://doi.org/10.1175/1520-0493(2002)130<2088:TSMFEM>2.0.CO;2.

Wu, W.-S., Parrish, D.F., Rogers, E. and Lin, Y. (2017) Regional
ensemble-variational data assimilation using global ensemble forecasts.
Weather and Forecasting, 32, 83–96. https://doi.org/10.1175/WAF-D-16-
0045.1.

Xie, Y., Koch, S., McGinley, J., Albers, S., Bieringer, P.E., Wolfson, M. and Chan,
M. (2011) A space-time multiscale analysis system: a sequential variational
analysis approach. Monthly Weather Review, 139, 1224–1240. https://doi.org/
10.1175/2010MWR3338.1.

Xu, Q., Nai, K., Wei, L., Zhang, P., Liu, S. and Parrish, D. (2011) A
VAD-based de-aliasing method for radar velocity data quality control. Journal
of Atmospheric and Oceanic Technology, 28, 50–62. https://doi.org/10.1175/
2010JTECHA1444.1.

Xu, Q., Wei, L., Gao, J., Zhao, Q., Nai, K. and Liu, S. (2016) Multistep varia-
tional data assimilation: important issues and a spectral approach. Tellus A, 68,
31110. https://doi.org/10.3402/tellusa.v68.31110.

Yang, X. (2005) Analysis blending using spatial filter in grid-point model cou-
pling. HIRLAM Newsletter, 49, 3–11.

Zängl, G., Reinert, D., Ripodas, P. and Baldauf, M. (2015) The ICON (ICOsahe-
dral Non-hydrostatic) modelling framework of DWD and MPI-M: description
of the non-hydrostatic dynamical core. Quarterly Journal of the Royal Mete-
orological Society, 141, 563–579. https://doi.org/10.1002/qj.2378.
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Schraff C, et al. Survey of data assimilation meth-
ods for convective-scale numerical weather predic-
tion at operational centres. Q J R Meteorol Soc.
2018;144:1218–1256. https://doi.org/10.1002/qj.3179

https://doi.org/10.1127/0941-2948/2014/0558
https://doi.org/10.1002/qj.2306
https://doi.org/10.1175/WAF-D-15-0043.1
https://doi.org/10.1175/MWR-D-11-00276.1
https://doi.org/10.1175/1520-0493(2004)132<1190:RWRUED>2.0.CO;2
https://doi.org/10.1175/1520-0493(2004)132<1190:RWRUED>2.0.CO;2
https://doi.org/10.1175/2007MWR2018.1
https://doi.org/10.1175/1520-0493(2002)130<2088:TSMFEM>2.0.CO;2
https://doi.org/10.1175/WAF-D-16-0045.1
https://doi.org/10.1175/WAF-D-16-0045.1
https://doi.org/10.1175/2010MWR3338.1
https://doi.org/10.1175/2010MWR3338.1
https://doi.org/10.1175/2010JTECHA1444.1
https://doi.org/10.1175/2010JTECHA1444.1
https://doi.org/10.3402/tellusa.v68.31110
https://doi.org/10.1002/qj.2378
https://doi.org/10.1002/qj.2829
https://doi.org/10.1002/qj.2904
https://doi.org/10.1175/1520-0493(2004)132<1238:IOIEAO>2.0.CO;2
https://doi.org/10.1175/1520-0493(2004)132<1238:IOIEAO>2.0.CO;2
https://doi.org/10.1175/JTECH-1689.1
https://doi.org/10.1175/JTECH1757.1
https://doi.org/10.1175/JTECH1757.1
https://doi.org/10.1175/MWR2946.1
https://doi.org/10.1175/MWR2946.1
https://doi.org/10.1002/qj.3179



